Buku Teks Bahan Ajar Siswa

Paket Keahlian: Budidaya Krustacea

Pengelolaan Kualitas Air

KELAS X
SEMESTER 1

Direktorat Pembinaan Sekolah Menengah Kejuruan
Kementerian Pendidikan dan Kebudayaan
Republik Indonesia
KATA PENGANTAR

Kurikulum 2013 dirancang untuk memperkuat kompetensi siswa dari sisi sikap, pengetahuan dan keterampilan secara utuh. Keutuhan tersebut menjadi dasar dalam perumusan kompetensi dasar tiap mata pelajaran mencakup kompetensi dasar kelompok sikap, kompetensi dasar kelompok pengetahuan, dan kompetensi dasar kelompok keterampilan. Semua mata pelajaran dirancang mengikuti rumusan tersebut.

Pembelajaran kelas X dan XI jenjang Pendidikan Menengah Kejuruan yang disajikan dalam buku ini juga tunduk pada ketentuan tersebut. Buku siswa ini diberisi materi pembelajaran yang membekali peserta didik dengan pengetahuan, keterampilan dalam menyajikan pengetahuan yang dikuasai secara kongkrit dan abstrak, dan sikap sebagai makhluk yang mensyukuri anugerah alam semesta yang dikeruniakan kepadanya melalui pemanfaatan yang bertanggung jawab.

Buku ini menjabarkan usaha minimal yang harus dilakukan siswa untuk mencapai kompetensi yang diharuskan. Sesuai dengan pendekatan yang digunakan dalam kurikulum 2013, siswa diberikan untuk mencari dari sumber belajar lain yang tersedia dan terbentang luas di sekitarnya. Peran guru sangat penting untuk meningkatkan dan menyesuaikan daya serap siswa dengan ketersediaan kegiatan buku ini. Guru dapat memperkayanya dengan kreasi dalam bentuk kegiatan-kegiatan lain yang sesuai dan relevan yang bersumber dari lingkungan sosial dan alam.

Buku ini sangat terbuka dan terus dilakukan perbaikan dan penyempurnaan. Untuk itu, kami mengundang para pembaca memberikan kritik, saran, dan masukan untuk perbaikan dan penyempurnaan. Atas kontribusi tersebut, kami ucapkan terima kasih. Mudah-mudahan kita dapat memberikan yang terbaik bagi kemajuan dunia pendidikan dalam rangka mempersiapkan generasi seratus tahun Indonesia Merdeka (2045).
DAFTAR ISI

KATA PENGANTAR .. i
DAFTAR ISI .. ii
DAFTAR GAMBAR .. iv
DAFTAR TABEL .. vi
PETA KEDUDUKAN BAHAN AJAR ... vii
GLOSARIUM .. viii
I. PENDAHULUAN .. 1
 A. Deskripsi .. 1
 B. Ruang Lingkup Materi .. 2
 C. Prasyarat ... 3
 D. Petunjuk Penggunaan ... 3
 1. Prinsip-prinsip Belajar ... 3
 2. Pembelajaran .. 3
 3. Penilaian/asessmen ... 4
 E. Tujuan Akhir ... 4
 F. Kompetensi Inti dan Kompetensi Dasar ... 5
 G. Cek Kemampuan Awal ... 7
II. PEMBELAJARAN .. 8
 KEGIATAN PEMBELAJARAN 1. IDENTIFIKASI PARAMETER KUALITAS AIR 8
 A. Deskripsi .. 8
 B. Kegiatan Belajar .. 8
 1. Tujuan Pembelajaran ... 8
 2. Uraian Materi .. 9
 3. Refleksi .. 106
 4. Tugas ... 107
 5. Tes Formatif ... 107
 C. Penilaian .. 109
KEGIATAN BELAJAR 2. PENGAMBILAN SAMPEL KUALITAS AIR ...116
A. Deskripsi ..116
B. Kegiatan Belajar ..116
1. Tujuan Pembelajaran ..116
2. Uraian Materi ..116
3. Refleksi ...139
4. Tugas ..140
5. Tes Formatif ...140
C. Penilaian ..143
1. Penilaian Sikap ..143
2. Penilaian Pengetahuan ...147
3. Penilaian Keterampilan ..148
KEGIATAN PEMBELAJARAN 3. PENGUKURAN KUALITAS AIR ...150
A. Deskripsi ..150
B. Kegiatan Belajar ..150
1. Tujuan Pembelajaran ..150
2. Uraian Materi ..150
3. Refleksi ..222
4. Tugas ..222
5. Tes Formatif ...223
C. Penilaian ..225
1. Penilaian Sikap ..225
2. Penilaian Pengetahuan ...229
3. Penilaian Keterampilan ..230
III. PENUTUP ..233
DAFTAR PUSTAKA ..234
DAFTAR GAMBAR

Gambar 1. Warna-warni perairan umum (a) Pantai Raja Ampat, Indonesia (b) Danau Hiller, Australia, (c) Danau Kelimutu, NTT Indonesia, (d) Pantai La Jolla, San Diego, (e) Tambak Garam di San Fransisco Bay dan (f) sumber air panas The grand prismatic spring di Amerika Serikat.11

Gambar 2. Kolam ikan dengan warna hijau dan kecoklatan..13

Gambar 3. Zonasi perairan berdasarkan intensitas cahaya matahari..........................18

Gambar 4. Hubungan antara suhu air dan waktu inkubasi..20

Gambar 5. Stratifikasi perairan tergenang berdasarkan perbedaan suhu...............23

Gambar 6. Kekeruhan pada kolam budidaya...25

Gambar 7. Stratifikasi vertikal salinitas berdasarkan kedalaman perairan.............29

Gambar 8. Sebaran salinitas secara horizontal..30

Gambar 9. Perairan dengan tingkat kecerahan tinggi..32

Gambar 10. Zonasi perairan laut berdasarkan kedalamaninya.................................37

Gambar 11. Pemanfaatan arus pada budidaya laut...39

Gambar 12. Pemanfaatan arus sungai untuk kegiatan rekreasi41

Gambar 13. Mekanisme pasang surut air laut ...49

Gambar 14. Pengaruh suhu terhadap berat jenis air...55

Gambar 15. Serangga yang dapat bertahan di atas permukaan air akibat tegangan permukaan .. 58

Gambar 16. Kincir angin yang berfungsi untuk pengadukan, sebagai salah satu upaya untuk meningkatkan kadar oksigen dalam air ... 65

Gambar 17. Penguraian nitrogen dalam perairan .. 86

Gambar 18. Plankton (a) Fitoplankton (b) Zooplankton... 94

Gambar 19. Bentos sebagai indikator perairan (a)Planaria, (b) Leuctra, (c) Ephemerella, (d) Hydropsyche, (e) Lymnaea dan (f) Tubifex...............98

Gambar 20. Makrobenthos (a) kepiting laut, (b) teripang, (c) bintang laut...........99

Gambar 21. Nekton (a) ikan, (b) cumi-cumi, (c) penyu dan (d) kuda laut102
Gambar 22. Neuston (a) serangga air dan (b) Physalie “man o’war” (jelly fish).......104
Gambar 23. Perifiton (a) Halophila sp, (b) anelida, (c) organisme perifiton yang menutupi cangkang Eustrombus gigas..105
Gambar 24. Lokasi pengambilan sampel air sungai ...121
Gambar 25. Melakukan pengawetan sampel air ...135
Gambar 26. Turbidimetri ..163
Gambar 27. Refraksi cahaya..165
Gambar 28. Pengukuran kecerahan (a) secchi disk dengan skala pengukuran dan (b) penggunaan secchi disk..167
Gambar 29. Pengukuran kualitas air di lapangan/lokasi...171
Gambar 30. Kertas lakmus...174
Gambar 31. Pengukuran sampel dengan pH paper (a) gambar indikator universal, (b) Indikator universal digunakan dengan cara mencelupkan indikator universal sampai batas warna ke dalam larutan yang akan ditentukan pH nya, akan terlihat perubahan warna pada kertas indikator, (c) kemudian cocokkan perubahan warna dengan warna indikator pada kotak. Dan dapat ditentukan pH larutan...176
Gambar 32. Pengukuran kadar oksigen terlarut dengan cara titrasi181
Gambar 33. Pengukuran kualitas air dengan menggunakan spektrofotometer197
Gambar 34. Haemocytometer (b) perbesaran penampang untuk menghitung sampel plankton (c) titik pengamatan kelimpahan plankton..208
Gambar 35. Sedgwick rafter cell...208
Gambar 36. Bogorov tray ..209
DAFTAR TABEL

Tabel 1. Pengaruh kadar garam (bahan terlarut) terhadap berat jenis air 53
Tabel 2. Hubungan antara kekentalan air dengan suhu .. 56
Tabel 3. Pengaruh pH terhadap komunitas biologi perairan .. 62
Tabel 4. Hubungan antara pH air dan kehidupan ikan budidaya 63
Tabel 5. Kelarutan oksigen pada suhu berbeda ... 67
Tabel 6. Pengaruh suhu terhadap kelarutan karbon dioksida di perairan alami 69
Tabel 7. Jumlah nitrogen organik dalam air ... 75
Tabel 8. Klasifikasi perairan berdasarkan nilai kesadahan ... 77
Tabel 9. Konversi tingkat kesadahan dengan kadar CaCO₃ dan tingkat kekerasan perairan ... 78
Tabel 10. Kation dan anion utama pada perairan tawar dan laut 80
Tabel 11. Plankton berdasarkan perbedaan ukuran ... 92
Tabel 12. Perkiraan jarak pencampuran sempurna di sungai ... 122
Tabel 13. Jumlah titik pengambilan sampel air sungai sesuai klasifikasinya 122
Tabel 14. Jumlah titik pengambilan sampel air sungai berdasarkan klasifikasi dan debit rata-rata tahunan ... 124
Tabel 15. Peralatan pengambilan sampel (sampling) kualitas air 128
Tabel 16. Pengawet dan wadah yang diperlukan untuk pengawetan air sampel sesuai dengan parameter yang akan diukur ... 135
Tabel 17. Parameter kualitas air untuk budidaya dan peralatan pengukuran yang dapat digunakan ... 151
Tabel 18. Peralatan yang digunakan untuk pengukuran kualitas air dengan cara titrasi ... 158
Tabel 19. Perubahan warna kertas lakmus .. 174
Tabel 20. Beberapa zat indikator Asam Basa .. 175
Tabel 21. Nilai indeks keanekaragaman yang diperoleh dapat mengindikasikan 213
Tabel 22. Klasifikasi Derajat Pencemaran dan Interpretasi Diversitas Komunitas dengan menggunakan Indeks Perbandingan Sekuensial .. 218
PETA KEDUDUKAN BAHAN AJAR

DASAR PROGRAM KEAHlian

SEMESTER I

Dasar-Dasar Budidaya Perairan

Pengelolaan Kualitas Air

Kesehatan Biota Air

Produksi Pakan Buatan

Produksi Pakan Alami

Simulasi Digital
<table>
<thead>
<tr>
<th>GLOSARIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbsi : daya serap</td>
</tr>
<tr>
<td>Asphyxiation : berkurangnya oksigen terlarut dalam perairan sehingga mengakibatkan kematian</td>
</tr>
<tr>
<td>Biofluidynamics : pergerakan larutan biologis secara dinamis</td>
</tr>
<tr>
<td>Biomecanics : mekanisasi biologi</td>
</tr>
<tr>
<td>Combine reagent : reagen campuran hasil kombinasi</td>
</tr>
<tr>
<td>Concentration factor : faktor koreksi</td>
</tr>
<tr>
<td>Container sampler : pengamatan sampel dengan metode kolonisasi</td>
</tr>
<tr>
<td>Dekomposisi : gabungan atau campuran dari beberapa bahan atau materi</td>
</tr>
<tr>
<td>Disperse : pembauran</td>
</tr>
<tr>
<td>Dominasi : materi yang jumlahnya paling banyak atau menguasai</td>
</tr>
<tr>
<td>Endotoksin : racun yang dihasilkan dari dalam tubuh dan berpengaruh terhadap tubuh itu sendiri</td>
</tr>
<tr>
<td>Epineuston : neuston yang banyak hidup di atas permukaan air</td>
</tr>
<tr>
<td>Evaporasi : penguapan</td>
</tr>
<tr>
<td>Filtrasi : penyaringan</td>
</tr>
<tr>
<td>Fitoplanton : plankton dari kelompok tumbuhan</td>
</tr>
<tr>
<td>Fluktuasi : kisaran perubahan parameter kualitas air</td>
</tr>
<tr>
<td>Full moon : bulan purnama</td>
</tr>
<tr>
<td>Heterotrop : organisme yang mampu mengubah energi matahari menjadi energi lain</td>
</tr>
<tr>
<td>Hyponeuston : neuston yang banyak hidup di bawah permukaan air</td>
</tr>
<tr>
<td>Immobile : stagnan atau tidak bergerak</td>
</tr>
<tr>
<td>Impedite sampler : pengamatan sampel dengan metode tangkap dan segera diamati</td>
</tr>
<tr>
<td>Inkubasi : masa pengeraman telur</td>
</tr>
<tr>
<td>English</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Locomotor physiology</td>
</tr>
<tr>
<td>Mintakat</td>
</tr>
<tr>
<td>Nektonology</td>
</tr>
<tr>
<td>New moon</td>
</tr>
<tr>
<td>Part per million</td>
</tr>
<tr>
<td>Presipitasi</td>
</tr>
<tr>
<td>Sentrifugasi</td>
</tr>
<tr>
<td>Spatial differences</td>
</tr>
<tr>
<td>Stratifikasi</td>
</tr>
<tr>
<td>Temporal differences</td>
</tr>
<tr>
<td>Tide generation force</td>
</tr>
<tr>
<td>Trap sampler</td>
</tr>
<tr>
<td>Turbidity</td>
</tr>
<tr>
<td>Turbulensi</td>
</tr>
<tr>
<td>Zooplankton</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. Deskripsi

Pengelolaan kualitas air adalah ilmu yang mempelajari tentang upaya pemeliharaan kualitas air sehingga tercapai kualitas air yang diinginkan sesuai peruntukannya untuk menjamin agar kualitas air tetap dalam kondisi alamiahnya. Dalam kegiatan budidaya perairan, yang dimaksud dengan pengelolaan kualitas air meliputi program kegiatan yang mengarahkan perairan budidaya pada keseimbangan ekosistem perairan dalam suatu wadah yang terbatas, agar tercipta suatu kondisi perairan yang menyerupai habitat alami biota air yang dibudidayakan, baik dari segi sifat, tingkah laku, maupun secara ekologinya.

Air merupakan media kehidupan biota air yang sangat menentukan berhasil tidaknya dalam suatu usaha budidaya perairan. Faktor penentu ini dikarenakan seluruh kehidupan biota air sangat bergantung pada kondisi air, antara lain; untuk kebutuhan respirasi, keseimbangan cairan tubuh, proses fisiologis serta ruang gerak. Kebutuhan kondisi air ini sangat berpengaruh pada pengkondisian kualitas yang sesuai dengan kebutuhan biota air.

Kualitas air pada kegiatan budidaya perairan mudah sekali berfluktuasi yang dipengaruhi oleh aktifitas kehidupan biota air itu sendiri maupun oleh lingkungan sekitarnya. Kecenderungan akibat pengaruh ini seringkali dapat menurunkan kualitas air yang dapat menyebabkan terganggunya fisiologis biota air. Untuk memudahkan pengelolaan dalam kualitas air, maka parameter kualitas air dibedakan dalam 3 bagian yaitu berdasarkan fisika, kimia dan biologi.

Pengelolaan suatu kualitas air dilakukan dengan cara mengamati parameter-parameter kualitas air yang dibutuhkan. Oleh karena itu, dengan pemahaman yang baik tentang terminologi, karakteristik dan interkoneksi dari parameter-
parameter kualitas air akan membantu dalam melakukan pengelolaan kualitas air yang sesuai untuk kegiatan budidaya perairan.

Tuhan telah menciptakan alam semesta ini dengan segala keteraturannya. Dalam kegiatan budidaya perairan, keteraturan itu selalu ada. Oleh karena itu, segala sesuatu yang dipelajari dalam mata pelajaran pengelolaan kualitas air membuktikan adanya kebesaran Tuhan. Untuk menciptakan lingkungan hidup yang baik bagi biota air yang dipelihara dalam wadah budidaya, maka air sebagai media hidup harus dikelola agar memenuhi standar kualitas dan kuantitas yang sesuai dan memenuhi persyaratan kebutuhan biota air tersebut. Untuk hal tersebut, maka perlu dilakukan suatu pengelolaan kualitas air dengan baik.

B. Ruang Lingkup Materi

1. Berbagai parameter fisika, kimia dan biologi perairan
2. Faktor-faktor yang mempengaruhi kondisi parameter fisika, kimia dan biologi perairan
3. Kriteria optimal parameter fisika, kimia dan biologi kualitas air untuk budidaya perairan sesuai dengan kebutuhan komoditas yang dipelihara
4. Lokasi pengambilan sampel
5. Teknik pengambilan sampel
6. Teknik penanganan sampel
7. Teknik pengawetan sampel
8. Identifikasi alat dan bahan pengukuran kualitas air
9. Prinsip dan prosedur pengukuran kualitas air
10. Teknik pemeliharaan alat ukur kualitas air
C. Prasyarat

Sebelum mempelajari buku teks ini siswa diharapkan:

1. Sehat jasmani dan rohani
2. Memiliki keinginan untuk bisa memahami dan menggali lebih banyak mengenai informasi yang akan disampaikan
3. Mampu menganalisa materi yang akan disampaikan dengan sikap, pengetahuan dan keterampilan yang sesuai dengan scientific learning

D. Petunjuk Penggunaan

1. Prinsip-prinsip Belajar

 a. Berfokus pada student (student center learning),
 b. Peningkatan kompetensi seimbang antara pengetahuan, keterampilan dan sikap
 c. Kompetensi didukung empat pilar yaitu: inovatif, kreatif, afektif dan produktif

2. Pembelajaran

 a. Mengamati (melihat, mengamati, membaca, mendengar, menyimak)
 b. Menanya (mengajukan pertanyaan dari yang faktual sampai ke yang bersifat hipotesis
 c. Mengeksplorasi/eksperimen (menentukan data yang diperlukan, menentukan sumber data, mengumpulkan data)
 d. Mengasosiasi (menganalisis data, menyimpulkan dari hasil analisis data)
 e. Mengkomunikasikan (menyampaikan hasil konseptualisasi dalam bentuk lisan, tulisan diagram, bagan, gambar atau media)
3. **Penilaian/assesmen**

 a. Penilaian dilakukan berbasis kompetensi,

 b. Penilaian tidak hanya mengukur kompetensi dasar tetapi juga kompetensi inti dan standar kompetensi lulusan.

 c. Mendorong pemanfaatan portofolio yang dibuat siswa sebagai instrument utama penilaian kinerja siswa pada pembelajaran di sekolah dan industri.

 d. Penilaian dalam pembelajaran panen dan pascapanen dapat dilakukan secara terpadu dengan proses pembelajaran.

 e. Aspek penilaian pembelajaran panen dan pascapanen meliputi hasil belajar dan proses belajar siswa.

 f. Penilaian dapat dilakukan dengan menggunakan tes tertulis, observasi, tes praktik, penugasan, tes lisan, portofolio, jurnal, inventori, penilaian diri, dan penilaian antarteman.

 g. Pengumpulan data penilaian selama proses pembelajaran melalui observasi juga penting untuk dilakukan.

 h. Data aspek afektif seperti sikap ilmiah, minat, dan motivasi belajar dapat diperoleh dengan observasi, penilaian diri, dan penilaian antarteman.

E. **Tujuan Akhir**

Mata pelajaran pengelolaan kualitas air bertujuan untuk:

1. Menghayati hubungan antara makhluk hidup dan lingkungannya sebagai bentuk kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakannya;

2. Mengamalkan pengetahuan dan keterampilan pada pembelajaran pengelolaan kualitas air sebagai amanat untuk kemaslahatan umat manusia;

3. Menghayati sikap cermat, teliti dan tanggungjawab sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air;
4. Menghayati pentingnya kerjasama sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air;
5. Menghayati pentingnya kepedulian terhadap kebersihan lingkungan laboratorium/lahan praktek sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air;
6. Menghayati pentingnya bersikap jujur, disiplin serta bertanggung jawab sebagai hasil dari implementasi pembelajaran pengelolaan kualitas air;
7. Menjalankan perilaku ilmiah (memiliki rasa ingin tahu; objektif; jujur; teliti; cermat; tekun; hati-hati; bertanggung jawab; terbuka; kritis; kreatif; inovatif dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud implementasi sikap dalam melakukan percobaan dan berdiskusi dalam mata pelajaran pengelolaan kualitas air;
8. Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan;

F. Kompetensi Inti dan Kompetensi Dasar

<table>
<thead>
<tr>
<th>KOMPETENSI INTI</th>
<th>KOMPETENSI DASAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Menghayati dan mengamalkan ajaran agama yang dianutnya</td>
<td>a. Menghayati hubungan antara mahluk hidup dan lingkungannya sebagai bentuk kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakannya</td>
</tr>
<tr>
<td></td>
<td>b. Mengamalkan pengetahuan dan keterampilan pada pembelajaran pengelolaan kualitas air sebagai amanat untuk kemaslahatan umat manusia.</td>
</tr>
<tr>
<td>2. Menghayati dan Mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan pro-aktif dan menunjukan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi</td>
<td>a. Menghayati perilaku cermat, teliti dan tanggungjawab sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air.</td>
</tr>
<tr>
<td></td>
<td>b. Menghayati pentingnya kerjasama sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air.</td>
</tr>
<tr>
<td>KOMPETENSI INTI</td>
<td>KOMPETENSI DASAR</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia</td>
<td>c. Menghayati pentingnya kepedulian terhadap kualitas air media/lingkungan budidaya ikan sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air.</td>
</tr>
<tr>
<td></td>
<td>d. Menghayati pentingnya bersikap jujur, disiplin serta bertanggung jawab sebagai hasil implementasi dari pembelajaran pengelolaan kualitas air.</td>
</tr>
<tr>
<td></td>
<td>e. Menjalankan perilaku ilmiah (memiliki rasa ingin tahu; objektif; jujur; teliti; cermat; tekun; hati-hati; bertanggung jawab; terbuka; kritis; kreatif; inovatif dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud implementasi sikap dalam melakukan percobaan dan berdiskusi dalam mata pelajaran pengelolaan kualitas air.</td>
</tr>
<tr>
<td></td>
<td>f. Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan.</td>
</tr>
</tbody>
</table>

3. Memahami dan menerapkan pengetahuan faktual, konseptual, dan prosedural berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dalam wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian dalam bidang kerja yang spesifik untuk memecahkan masalah.

a. Menganalisis macam - macam parameter kualitas air dalam budidaya perairan	b. Menerapkan pengambilan sampel kualitas air (fisika, kimia dan biologi) berdasarkan jenis perairan
c. Menerapkan pengukuran kualitas air (fisika, kimia dan biologi) secara analitik	d. Menganalisis kesesuaian kualitas air pada budidaya perairan
e. Menerapkan pengelolaan parameter kualitas air budidaya perairan	

4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarynya di sekolah secara

<p>| a. Mengolah, menalar dan menyaji macam - macam parameter kualitas air dalam budidaya perairan | b. Melakukan pengambilan sampel kualitas air (fisika, kimia dan biologi) |</p>
<table>
<thead>
<tr>
<th>KOMPETENSI INTI</th>
<th>KOMPETENSI DASAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>mandiri, dan mampu melaksanakan tugas spesifik di bawah pengawasan langsung</td>
<td>berdasarkan jenis perairan</td>
</tr>
<tr>
<td></td>
<td>c. Melakukan pengukuran kualitas air (fisika, kimia dan biologi) secara analitik</td>
</tr>
<tr>
<td></td>
<td>d. Mengolah, menalar dan menyaji kesesuaian kualitas air pada budidaya perairan</td>
</tr>
<tr>
<td></td>
<td>e. Mengelola parameter kualitas air budidaya perairan</td>
</tr>
</tbody>
</table>

G. Cek Kemampuan Awal

Jawablah pertanyaan-pertanyaan dibawah ini sesuai dengan kemampuan yang dimiliki dengan sejujurnya, dengan cara memberikan tanda pada kolom Ya atau Tidak

<table>
<thead>
<tr>
<th>No</th>
<th>Pertanyaan</th>
<th>Ya</th>
<th>Tidak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apakah anda telah mengetahui parameter-parameter kualitas fisika air?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Apakah anda telah mengetahui parameter-parameter kualitas kimia air?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Apakah anda telah mengetahui parameter-parameter kualitas biologi air?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Apakah anda dapat menentukan titik pengambilan sampel?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Apakah anda dapat mengambil sampel untuk pengukuran kualitas air?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Apakah anda dapat melakukan pengukuran kualitas air untuk parameter fisika, kimia dan biologi?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II. PEMBELAJARAN

KEGIATAN PEMBELAJARAN 1. IDENTIFIKASI PARAMETER KUALITAS AIR

A. Deskripsi

Identifikasi parameter kualitas air merupakan materi dasar yang harus anda pahami sebelum memulai kegiatan budidaya perairan, hal ini disebabkan karena perairan merupakan media hidup komoditas budidaya perairan dimana pada perairan tersebut hidup dan berkembang biak komoditas perairan yang akan dibudidayakan. Pada identifikasi parameter kualitas air ini akan dipelajari beberapa materi, antara lain :

1. Berbagai parameter fisika perairan beserta faktor-faktor yang mempengaruhinya
2. Berbagai parameter kimia perairan beserta faktor-faktor yang mempengaruhinya
3. Berbagai parameter biologi perairan beserta faktor-faktor yang mempengaruhinya

B. Kegiatan Belajar

1. Tujuan Pembelajaran

 a. Peserta didik yang telah mempelajari materi ini diharapkan mampu :
 b. Menganalisa parameter-parameter fisika kualitas air
 c. Menganalisa parameter-parameter kimia kualitas air
 d. Menganalisa parameter-parameter biologi kualitas air
2. Uraian Materi

Lingkungan perairan sebagai tempat hidup atau media hidup organisme akuatik merupakan salah satu aspek terpenting yang perlu diperhatikan dalam melakukan budidaya perairan. Hal ini disebabkan karena kualitas perairan suatu wadah budidaya sangat menentukan kehidupan organisme akuatik yang dibudidayakan, baik dari aspek sumber air yang digunakan seperti parameter fisika, kimia dan biologi, juga perlu diketahui dan dipahami aspek-aspek yang diperlukan dalam pengelolaan kualitas air. Parameter fisika merupakan parameter yang dapat diamati akibat perubahan fisika air seperti cahaya, suhu, kecerahan, kekeruhan, warna, padatan tersuspensi dan padatan terlarut hingga salinitas air. Sedangkan parameter kimia perairan merupakan parameter perairan yang terukur akibat adanya reaksi kimia di perairan, seperti pertukaran ion-ion terlarut dalam air. Parameter biologi yang teramati diperairan merupakan organisme akuatik yang hidup bersama diperairan budidaya dapat berupa tumbuhan maupun hewan dengan bentuk yang mikro maupun makro.

a. Parameter fisika

Sifat-sifat fisika air merupakan faktor pemisah antara lingkungan air dengan lingkungan udara. Selain itu faktor fisika juga banyak mempengaruhi kehidupan organisme di dalam air. Adanya perbedaan yang amat besar dari masing-masing faktor fisika di lingkungan air dengan lingkungan udara, mengakibatkan pengaruh yang berbeda terhadap tumbuhan dan hewan pada masing-masing lingkungan tersebut. Di samping itu air juga berfungsi untuk menjaga tekanan osmosis, sebagai pelarut dan penghantar listrik yang baik.
1) **Warna Air**

Warna dapat menghambat penetrasi cahaya ke dalam air. Air laut berwarna karena proses alami, baik yang berasal dari proses biologis maupun non-biologis. Produk dari proses biologis dapat berupa humus, gambut dan lain-lain, sedangkan produk dari proses non-biologis dapat berupa senyawa-senyawa kimia yang mengandung unsur Fe, Ni, Co, Mn, dan lain-lain. Selain itu, perubahan warna air laut dapat pula disebabkan oleh kegiatan manusia yang menghasilkan limbah berwarna. Air laut dengan tingkat warna tertentu dapat mengurangi proses fotosintesa serta dapat mengganggu kehidupan biota akuatik terutama fitoplankton dan beberapa jenis bentos.

Pengamatan

Pernahkan kalian memperhatikan warna-warni perairan yang ada disekitar anda? Pernahkah terbersit dalam benak anda mengapa perairan bisa memiliki warna yang berbeda-beda? Amatilah warna beberapa perairan yang dekat dengan lingkungan anda, kumpulkan informasi mengenai warna perairan dari berbagai sumber!

Warna air pada suatu perairan yang kita lihat adalah merupakan:

a) Berkas cahaya yang tidak diserap dan keluar kembali dari perairan tersebut.

b) Warna yang disebabkan oleh bahan-bahan yang melayang-layang baik berupa organisme maupun benda mati. Warna-warni air tersebut seperti: warna biru, hijau, hijau kuning dan warna coklat.
Gambar 1. Warna-warni perairan umum (a) Pantai Raja Ampat, Indonesia (b) Danau Hiller, Australia, (c) Danau Kelimutu, NTT Indonesia, (d) Pantai La Jolla, San Diego, (e) Tambak Garam di San Francisco Bay dan (f) sumber air panas The grand prismatic spring di Amerika Serikat.
Warna pada air disebabkan oleh adanya partikel hasil pembusukan bahan organik, ion-ion metalalam (besi dan mangan), plankton, humus, buangan industri, dan tanaman air. Adanya oksida besi menyebabkan air berwarna kemerahan, sedangkan oksida mangan menyebabkan air berwarna kecoklatan atau kehitaman. Kadar besi sebanyak 0,3 mg/l dan kadar mangan sebanyak 0,05 mg/l sudah cukup dapat menimbulkan warna pada perairan (peavy et al., 1985 dalam Effendi, 2003). Kalsium karbonat yang berasal dari daerah berkapur menimbulkan warna kehijauan pada perairan. Bahan-bahan organik, misalnya tanin, lignin, dan asam humus yang berasal dari dekomposisi tumbuhan yang telah mati menimbulkan warna kecoklatan.

Pada lingkungan budidaya warna air yang didapati juga bermacam-macam, antara lain dipengaruhi oleh kandungan plankton yang tergandung di dalam air baik fitoplankton maupun zooplankton, larutan tersuspensi, dekomposisi bahan organik, mineral maupun bahan lain yang terlarut dalam air. Warna air yang disebabkan oleh dominasi plankton dapat mempengaruhi warna air, sehingga secara tidak langsung dari warna perairan juga dapat menggambarkan kesuburan perairan. warna air yang disebabkan oleh dominasi plankton antara lain:

a) Hijau, disebabkan oleh *Dunaleilla* dan *Chlorella* yang merupakan pakan alami yang baik untuk biota budidaya, namun ada juga warna hijau yang didominasi oleh Chaetomorpha dan Enteromorpha yang memelihara pengaruh kurang baik terhadap kehidupan biota budidaya.

b) Hijau tua, disebabkan oleh dominasi *Mycrocystis*, *Spirulina*, *Oscillatoria* dan *Phormidium* yang termasuk blue green algae. plankton ini mengindikasikan banyaknya bahan organik dalam
perairan seperti ammonia dan hydrogen sulfide, sehingga perairan
dengan warna ini kurang baik untuk kegiatan budidaya biota air.

c) Kuning kecoklatan, disebabkan oleh *Chaetocheros, Nitzchia,
Gyrossigma* dan *Skletonema* atau yang termasuk Diatom. diatom
akan tumbuh cepat pada lingkungan yang bersuhu rendah.

d) Hijau kecoklatan, disebabkan karena kandungan Bacillariophyta,
warna air ini bagus untuk area pertambakan karena
mengindikasikan banyaknya fitoplankton yang dapat dimanfaatkan
langsung oleh zooplankton

e) Coklat kemerahan, disebabkan karean Peridinium dan Schizothrix
calcicolla atau dari jenis Phytoflagellata yang berbahaya karena
beracun sebagian plankton dapat mengeluarkan endotoksin yang
merugikan biota budidaya.

![Gambar 2. Kolam ikan dengan warna hijau dan kecoklatan](image)

Bahan anorganik juga sering memberikan warna-warna tertentu seperti
kalsium karbonat memberikan warna kehijau-hijauan, belerang dapat
memberikan warna hijau dan besi oksida memberikan warna
merah. Ada beberapa warna-warna air alami karena beberapa sebab:

a) Pada umumnya laut berwarna biru, hal ini disebabkan oleh sinar
matahari yang bergelombang pendek (sinar biru) dipantulkan lebih
banyak dari pada sinar lain.
b) Warna kuning, karena di dasarnya terdapat lumpur kuning, misalnya Sungai Kuning di Cina.

c) Warna hijau, karena adanya lumpur yang diendapkan dekat pantai yang memantulkan warna hijau dan juga karena adanya plankton-plankton dalam jumlah besar.

d) Warna putih, karena permukaannya selalu tertutup es seperti di laut kutub utara dan selatan.

e) Warna ungu, karena adanya organisme kecil yang mengeluarkan sinar-sinar fosfor seperti di laut ambon.

f) Warna hitam, karena di dasarnya terdapat lumpur hitam seperti di laut hitam

g) Warna merah, karena banyaknya binatang-binatang kecil berwarna merah yang terapung-apung.

Dalam penyediaan air minum, warna sangat dikaitkan dengan segi estetika. Warna air dapat dijadikan sebagai petunjuk jenis pengolahan yang sesuai. Berdasarkan zat penyebabnya, warna air dapat dibedakan menjadi:

a) **Warna Sejati (true color)**

Warna sejati disebabkan adanya zat-zat organik dalam bentuk koloid. Warna ini tidak akan berubah walaupun mengalami penyaringan dan sentrifugasi. Contoh dari warna sejati antara lain: warna air teh, warna air buangan industri tekstil, serta warna akibat adanya asam humus, plankton, atau akibat tanaman air yang mati.

b) **Warna Semu (apparent color)**

Warna semu disebabkan oleh adanya partikel-partikel tersuspensi dalam air. Warna ini akan mengalami perubahan setelah disaring atau disentrifugasi serta dapat mengalami pengendapan. Warna semu akan semakin pekat bila kekeruhan air meningkat.
2) Intensitas cahaya

Cahaya matahari merupakan sumber energi bagi semua kehidupan organisme perairan. Secara biologi cahaya sangat berperan penting, tanpa cahaya matahari semua proses kehidupan tidak akan berlangsung dan tidak akan dijumpai bentuk-bentuk kehidupan di muka bumi ini. Sedangkan dari sudut fisika, cahaya matahari merupakan sumber energi bagi terjadinya arus, gelombang, pemanasan perairan dan lain-lain.

Pengamatan

Cahaya matahari sangat dibutuhkan dalam perairan, carilah informasi sebanyak-banyaknya tentang manfaat cahaya matahari di perairan dan bagaimana mekanisme pemanfaatan cahaya matahari di perairan tersebut!

Radiasi matahari menentukan intensitas cahaya pada suatu kedalaman tertentu dan juga sangat mempengaruhi suhu perairan. Variasi suhu harian atau tahunan dari suatu perairan merupakan hasil dari (a) pancaran sinar, (b) penguapan (*evaporasi*) dan (c) konduksi panas.
Sinar matahari yang jatuh di permukaan air, sebagian akan dipantulkan dan sebagian lagi menembus ke dalam air. Sinar yang dipantulkan tergantung pada:

a. Bila di dalam perairan Sudut jatuh (sudut inklinasi)
 Sudut jatuh ialah sudut yang dihitung dari garis tegak lurus pada permukaan air. Pada sudut jatuh 60° cahaya dipantulkan sebesar 6%; pada 70° sebesar 13,4% dan 80° sebesar 34,8%.

b. Naungan

c. Keadaan permukaan air
 Untuk permukaan yang tenang cahaya yang dipantulkan lebih besar dibandingkan dengan permukaan air yang bergelombang.

d. Lamanya penyinaran
 Selama sehari terjadi perubahan tinggi matahari sehingga menyebabkan perubahan-perubahan yang besar dalam bagian cahaya yang dipantulkan. Hal ini dapat dilihat dari intensitas penyinaran pada sore hari berkurang lebih cepat di bawah permukaan air daripada di atasnya, sehingga pada waktu malam hari cahaya bulan yang dipantulkan akan lebih besar.

e. Sifat perairan itu sendiri
 Banyak terdapat partikel-partikel, baik berupa tanah liat yang sangat halus, butiran-butiran lumpur, fitoplankton maupun zooplankton akan mempengaruhi cahaya matahari yang menembus perairan.

Ditinjau dari segi produktivitas perairan, cahaya yang menembus permukaan air sangat penting. Cahaya ini mengalami pembauran (disperse) dan terserap (absorbsi) dan yang terserap akan dirubah menjadi energi panas.
Cahaya matahari yang masuk ke dalam perairan sangat berarti bagi proses kehidupan organisme. Tanpa cahaya matahari, proses fotosintesis tidak akan berlangsung. Hubungan antara intensitas cahaya matahari dengan kemungkinan berlangsungnya fotosintesis di perairan secara vertikal dibagi menjadi tiga bagian, yaitu:

- **Zona fotik (eufotik zone).**
 Dalam mintakat ini intensitas cahaya matahari masih demikian tingginya sehingga fitoplankton benar-benar berperan sebagai produser. Batas bawah mintakat eufotik adalah dimana cahaya matahari sudah tidak efektif lagi berperan sebagai produsen atau dimana tumbuhan bahari tidak dapat lagi efektif berperan sebagai sumber energi untuk berbagai proses faal. Proses faal tersebut dikenalsebagai proses respirasi, sehingga dapat dikatakan bahwa batas bawah mintakat eufotik ialah kedalaman dimana produksi bahan organik (P) oleh tumbuhan bahari sama dengan jumlah yang diperlukan untuk berlangsungnya respirasi (R). Jadi P=R atau biasa disebut juga kedalaman kompensasi. Zona ini memiliki kedalaman hingga ±200 m.

- **Zona twiligth (disfotic zone).**
 Di mintakat ini intensitas cahaya matahari demikian rendahnya sehingga fitoplankton bukan merupakan produser yang efektif. Produser di daerah ini sekedar hidup dan tidak mampu tumbuh dan berkembang biak. Kalau pada keadaan kompensasi P=R, maka dimintakat ini produksi bahan organik (P) lebih kecil dari jumlah bahan organik yang diperlukan untuk respirasi (R). Dengan demikian jelaslah bahwa produser yang terdapat dimintakat ini hanya sekedar hidup saja dan kecil kemungkinan untuk tumbuh dengan baik. Perairan ini memiliki kedalaman hingga ±1000 m.
• Zona afotik (*aphotic zone*).
Dimintakat ini tidakadacahaya matahari sehingga organisme yang didapatkan hanya organisme heterotrop dan saprofit. Pada zona ini disebut juga zona laut dalam dimana pada zona ini juga memiliki tekanan hidrostatik yang besar, suhu yang dingin, sirkulasi air yang sangat lemah serta suplai bahan makanan yang sedikit.

![Diagram of marine zones](image)

Gambar 3. Zonasi perairan berdasarkan intensitas cahaya matahari

Cahaya matahari selain berperan dalam proses fotosintesis juga berperan dalam pemanasan perairan atau fluktuasi suhu perairan, penglihatan bagi hewan yang hidup di dalam perairan tersebut, migrasi vertikal, dan dapat pula mengakibatkan kerusakan pada organisme.
3) Suhu

Pengamatan

Pernahkan anda berenang pada saat pagi, siang dan sore hari? apa yang anda rasakan? apakah anda merasakan suhu yang berbeda pada setiap waktu yang berbeda? atau anda merasakan suhu yang berbeda antara di permukaan dan di dasar perairan tersebut?

Menurut anda mengapa ada perbedaan suhu di badan air, coba anda hipotesa dan kumpulkan informasi mengenai suhu pada perairan!

Intensitas dan kualitas cahaya yang masuk ke dalam air dan yang diserap menghasilkan panas. Dari sudut ekologi, energi panas ini dan hubungannya dengan hal-hal yang terjadi di dalam air, merupakan faktor yang sangat penting dalam mempertahankan air sebagai suatu lingkungan hidup bagi hewan dan tumbuhan.

Suhu merupakan faktor fisika yang penting dimana-mana di dunia. Kenaikan suhu mempercepat reaksi-reaksi kimia; menurut Hukum van't Hoff kenaikan suhu 10°C akan melipatgandakan kecepatan reaksi, walaupun hukum ini tidak selalu berlaku. Misalnya saja proses metabolisme akan meningkat sampai puncaknya dengan kenaikan suhu tetapi kemudian menurun lagi. Setiap perubahan suhu cenderung untuk mempengaruhi banyaknya proses kimiai yang terjadi secara bersamaan pada jaringan tanaman dan binatang, karenanya juga mempengaruhi biota secara keseluruhan. Pada proses penetasan telur
suhu sangat berpengaruh terhadap lama waktu inkubasi telur, contohnya pada ikan bandeng makin tinggi suhu air penetasan, makin cepat waktu inkubasi. Pada suhu 29°C waktu inkubasi 27 – 32 jam dan pada suhu 31,5°C waktu inkubasi 20,5 – 22 jam.

Gambar 4. Hubungan antara suhu air dan waktu inkubasi

Sifat-sifat panas air ini yang mempengaruhi lingkungan perairan terdiri dari:

a) Panas jenis

Air termasuk salah satu zat yang mempunyai panas jenis yang tinggi, yang mana sangat baik bagi suatu lingkungan. Panas jenis ini
merupakan suatu faktor kapasitas energi panas untuk menaikkan
suhu suatu satuan berat pada skala 1ºC.

b) Suhu

Suhu secara langsung atau tidak langsung sangat dipengaruhi oleh
sinar matahari. Panas yang dimiliki oleh air akan mengalami
perubahan secara perlahan-lahan antara siang dan malam serta dari
musim ke musim. Selain itu, air mempunyai sifat dimana berat jenis
maksimum terjadi pada suhu 4ºC dan bukan pada titik beku.

Suhu air sangat berpengaruh terhadap jumlah oksigen terlarut di dalam
air. Jika suhu tinggi, air akan lebih cepat jenuh dengan oksigen
dibanding dengan suhunya rendah. Suhu air pada suatu perairan dapat
dipengaruhi oleh musim, lintang (latitude), ketinggian dari permukaan
laut (altitude), waktu dalam satu hari, penutupan awan, aliran dan
kedalaman air.

Peningkatan suhu air mengakibatkan peningkatan viskositas, reaksi
kimia, evaporasi dan volatisasi serta penurunan kelarutan gas dalam air
seperti O2, CO2, N2, CH4 dan sebagainya. Kisaran suhu air yang sangat
diperlukan agar pertumbuhan ikan-ikan pada perairan tropis dapat
berlangsung berkisar antara 25-32ºC. Kisaran suhu tersebut biasanya
berlaku di Indonesia sebagai salah satu negara tropis sehingga sangat
menguntungkan untuk melakukan kegiatan budidaya ikan.

Suhu air sangat berpengaruh terhadap proses kimia, fisika dan biologi
di dalam perairan, sehingga dengan perubahan suhu pada suatu
perairan akan mengakibatkan berubahnya semua proses di dalam
perairan. Hal ini dilihat dari peningkatan suhu air, maka kelarutan
oksigen akan berturun. Peningkatan suhu perairan 10ºC
mengakibatkan meningkatnya konsumsi oksigen oleh organisme
akuatik sekitar 2-3 kali lipat, sehingga kebutuhan oksigen oleh organisme akuatik meningkat.

Suhu air yang ideal bagi organisme air yang dibudidayakan sebaiknya adalah tidak terjadi perbedaan suhu yang mencolok antara siang dan malam (tidak lebih dari 5°C). Pada perairan yang tergenang yang mempunyai kedalaman air minimal 1,5 meter biasanya akan terjadi pelapisan (stratifikasi) suhu. Pelapisan ini terjadi karena suhu permukaan air lebih tinggi dibanding dengan suhu air di bagian bawahnya.

Pada perairan tergenang, berdasarkan perbedaan panas pada setiap kedalaman, perairan dapat dikelompokkan (stratifikasi) menjadi tiga, yaitu:

a) lapisan *epilimnion*, yaitu lapisan sebelah atas perairan yang hangat dengan penurunan suhu relatif kecil, seluruh masa air tercampur dengan baik karena adanya angin dan gelombang

b) lapisan *termoklin* atau *metalimnion*, yaitu lapisan tengah yang mempunyai penurunansuhu sangat tajam, pada daerah ini setiap penambahkan kedalaman 1 m maka suhu juga akan berkurang 1 °C

c) lapisan *hipolimnion*, yaitu lapisan paling bawah dimana padalapisan ini perbedaan suhu sangat kecil dan relatif konstan. pada lapisan ini hampir tidak terjadi pencampuran massa air sehingga suhu relatif dingin
Gambar 5. Stratifikasi perairan tergenang berdasarkan perbedaan suhu

Stratifikasi suhu ini terjadi karena masuknya panas dari cahaya matahari kedalam kolom air yang mengakibatkan terjadinya gradien suhu secara vertikal. Pada kolam yang kedalaman airnya kurang dari 2 meter biasanya terjadi stratifikasi suhu yang tidak stabil. Oleh karenanya, pembudidaya ikan yang melakukan kegiatan budidayaikan kedalaman air sebaiknya tidak lebih dari 2 meter. Selain itu untuk memecah stratifikasi suhu pada wadah budidaya ikan diperlukan suatu alat bantu dengan menggunakan aerator/blower/kincir air.

Sifat-sifat tersebut merupakan sifat yang unik dari air dan sangat penting dalam penyebaran (dinamika) panas di dalam air. Dengansifat-sifat air yang unik tersebut, maka air mendukung:

a) Kehidupan organisme dimusim dingin, karena air hanya membeku pada bagian permukaan.

b) Dengan perubahansuhu secara perlahan-lahan, hewan air mampu menyesuaikan diri pada setiap perubahan sifat-sifat air.
Sumber panas yang sangat mempengaruhi suhu air terutama dari:

a) Pancaran (radiasi) langsung dari sinar matahari.
b) Kondensasi (pengembusan) dari uap air.
c) Panas dari dasar perairan (pusat bumi).
d) Pengaruh panas dari atmosfir.
e) Panas dari hasil proses kimia dalam air.

Sedang faktor-faktor yang mempengaruhi penurunan suhu air adalah pada umumnya dari:

a) Penguapan (evaporasi).
b) Pemantulan/pelepasan panas kembali.
c) Pemantulan kembali cahaya matahari dari permukaan air ke atmosfir.

4) Kekeruhan

Kekeruhan merupakan gambaran sifat optik air oleh adanya bahan padatan terutama bahan tersuspensi dan sedikit dipengaruhi oleh warna air. Bahan tersuspensi ini berupa partikel tanah liat, lumpur, koloid tanah dan organisme perairan (mikroorganisme). Padatan tersuspensi tidak hanya membahayakan ikan tetapi juga menyebabkan air tidak produktif karena menghalangi masuknya sinar matahari untuk fotosintesa.

Kekeruhan air atau sering disebut turbidity adalah salah satu parameter uji fisik dalam analisis air. Tingkat kekeruhan air umumnya akan diketahui dengan besaran NTU (Nephelometer Turbidity Unit) setelah dilakukan uji aplikasi menggunakan alat turbidimeter.
Apabila bahan tersuspensi ini berupa padatan organisme, maka pada batas-batas tertentu dapat dijadikan indikator terjadinya pencemaran suatu perairan. Oleh sebab itu kekeruhan dapat mempengaruhi/menentukan:

a) Terjadinya gangguan respirasi,
b) Dapat menurunkan kadar oksigen dalam air,
c) Terganggunya daya lihat (visual) organisme akuatik
d) Terjadinya gangguan terhadap habitat.
e) Menghambat penetrasi cahaya ke dalam air
f) mengurangi efektifitas desinfeksi pada proses penjernihan air

Padatan tersuspensi berkorelasi positif dengan kekeruhan, semakin tinggi padatan tersuspensi yang terkandung dalam suatu perairan maka perairan tersebut semakin keruh. Kekeruhan pada perairan yang tergenang (lentik) lebih banyak disebabkan oleh bahan tersuspensi yang berupa koloid dan partikel-partikel halus, sedangkan pada sungai yang sedang banjir disebabkan karena adanya larutan tersuspensi yang terbawa arus air.

Gambar 6. Kekeruhan pada kolam budidaya
Salinitas

Salinitas didefinisikan sebagai jumlah bahan padat yang terkandung dalam tiap kilogram air laut, dengan asumsi semua karbonat diubah menjadi bentuk oksida, bromida dan iodin diganti dengan klorida dan Satuan salinitas dinyatakan dalam gram per kilogram, atau sebagai per seribu, yang lazim disebut “ppt”.

Air laut juga mengandung butiran-butiran halus dalam suspensi. Sebagian zat ini akan terlarut dan sebagian lagi akan mengendap ke dasar laut dan sisanya diuraikan oleh bakteri laut. Semua zat-zat terlarut inilah yang menyebabkan rasa asin pada air laut.

Lalu mengapa kadar salinitas di setiap perairan berbeda, padahal kadar garamnya tetap? Hal ini disebabkan karena adanya distribusi salinitas di laut. Distribusi ini terjadi secara vertikal dan horizontal. Distribusi salinitas dipengaruhi oleh beberapa faktor utama, yaitu :

a) Pola sirkulasi air : membantu penyebaran salinitas
b) Penguapan (evaporasi) : semakin tinggi tingkat penguapan di daerah tersebut, maka salinitasnya pun bertambah atau sebaliknya karena
garam-garam tersebut tertinggal di air contohnya di Laut Merah kadar salinitasnya mencapai 40\%/00.

c) Curan hujan (presipitasi) : semakin tinggi tingkat curah hujan di daerah tersebut, maka salinitasnya akan berkurang atau sebaliknya hal ini dikarenakan terjadinya pengenceran oleh air hujan.

d) Aliran sungai di sekitar (run off) : semakin banyak aliran sungai yang bermuara pada laut maka salinitasnya akan menurun dan sebaliknya.

Berdasarkan perbedaan salinitasnya perairan dapat dibedakan menjadi 4 kelompok, antara lain :

a) Perairan tawar (fresh water) yaitu perairan yang memiliki salinitas berkisar antara 0 – 5 ppt. contohnya pada air minum, air sungai, sumur, dsb

b) Perairan payau (brakish water) yaitu perairan yang memiliki salinitas berkisar antara 5 – 30 ppt, contohnya pada daerah hutan bakau, muara sungai, dan daerah tambak.

c) Perairan laut (saline water), yaitu perairan yang memiliki salinitas berkisar antara 30 – 50 ppt. contohnya laut lepas

d) Perairan hipersaline (brine water), yaitu perairan yang memiliki salinitas > 50 ppt. contohnya laut yang dekat kutub

Variasi salinitas dalam air laut akan mempengaruhi jasad-jasad hidup akuatik melalui pengendalian berat jenis dan keragaman tekanan osmotik. Jenis-jenis biota akuatik ditakdirkan untuk mempunyai hampir semua jaringan-jaringan lunak yang berat jenisnya mendekati berat jenis air laut biasa, sedangkan jenis-jenis biota yang hidup di dasar laut (bentos) mempunyai berat jenis yang lebih tinggi daripada air laut di atasnya. Salinitas menimbulkan tekanan-tekanan osmotik.
Pada umumnya kandungan garam dalam sel-sel biota laut cenderung mendekati kandungan garam dalam kebanyakan air laut. Kalau sel-sel itu berada di lingkungan dengan salinitas lain maka suatu mekanisme osmoregulasi diperlukan untuk menjaga keseimbangan kepekatan antara sel dan lingkungannya. Pada kebanyakan binatang estuaria penurunan salinitas permulaan biasanya dibarengi dengan penurunan salinitas dalam sel, suatu mekanisme osmoregulasi baru terjadi setelah ada penurunan salinitas yang nyata (Romimohtarto, 1985).

Cara-cara osmoregulasi meliputi perlindungan luar dari perairan sekitarnya, perlindungan membran sel, mekanisme ekskresi untuk membuang kelebihan air tawar dan sel dari badan. Kemampuan untuk menghadapi fluktuasi yang berasal dari Salinitas terdapat pada kelompok-kelompok bintang beraneka ragam dari protozoa sampai ikan. Biota estuaria biasanya mempunyai toleransi terhadap variasi salinitas yang besar (euryhalin). Contohnya ikan bandeng (Chanos chanos), ikan belanak (Mugil sp.) dan ikan mujair (Oreochromis mossambicus).

daerah terumbu karang. Pada umumnya salinitas alami perairan terumbu karang di Indonesia 31‰.

a) Distribusi Salinitas Vertikal

Distribusi vertikal dari salinitas erat hubungannya dengan distribusi vertikal dari suhu dan densitas. Pada umumnya permukaan laut mempunyai salinitas yang lebih tinggi daripada lapisan-lapisan yang lebih dalam. Hal ini disebabkan oleh pengaruh distribusi suhu terhadap stabilitas perairan yang lebih besar daripada pengaruh distribusi salinitas. Pada permukaan air laut memiliki salinitas yang lebih rendah dibanding lapisan di bawahnya, hal ini disebabkan karena adanya pergerakan angin, serta curah hujan juga dapat mempengaruhi perbedaan salinitas ini.

Pada lapisan troposphere, salinitas mengalami penurunan hingga pada kedalaman 500 meter (34,3-33,9‰). Kemudian terjadi kenaikan salinitas lagi sampai kedalaman 1.600-2.000 meter (34,8-34,9‰). Distribusi salinitas pada lapisan stratosphere lebih jelas ke arah horizontal.

Gambar 7. Stratifikasi vertikal salinitas berdasarkan kedalaman perairan
b) **Distribusi Salinitas Horizontal**

![Gambar 8. Sebaran salinitas secara horizontal](image)

6) **Kecerahan**

Kecerahan merupakan parameter fisika yang erat kaitannya dengan proses fotosintesis pada suatu ekosistem perairan. Kecerahan menggambarkan sejumlah atau sebagian cahaya yang diteruskan pada kedalaman tertentu yang dinyatakan dengan persen. Cahaya ini adalah
cahaya dari beberapa panjang gelombang di daerah spektrum cahaya yang terlihat dan jatuh tegak lurus pada lapisan permukaan air pada kedalaman tertentu.

Kecerahan air laut ditentukan oleh kekeruhan air laut itu sendiri dari kandungan sedimen yang dibawa oleh aliran sungai. Pada laut yang keruh, radiasi sinar matahari yang dibutuhkan untuk proses fotosintesis tumbuhan akan kurang dibandingkan dengan air laut jernih.

Pengukuran kecerahan air sebaiknya dilakukan pada saat siang hari dan cuaca relatif cerah. Pada perairan kecerahan air erat hubungannya dan berbanding terbalik dengan kelimpahan plankton terutama jenis phytoplankton yang berada di dalam perairan tersebut, atau dengan kata lain semakin tinggi tingkat kecerahan air maka kelimpahan phytoplankton akan semakin rendah dan sebaliknya semakin rendah tingkat kecerahan air maka kelimpahan phytoplankton di perairan tersebut semakin tinggi.
Gambar 9. Perairan dengan tingkat kecerahan tinggi

Phytoplankton merupakan jenis tanaman berukuran renik yang mempunyai zat hijau daun (klorofil) dan selalu melakukan fotosintesa dengan bantuan sinar matahari. Produktivitas plankton akan meningkat dengan semakin meningkatnya intensitas penyerapan cahaya matahari ke dalam perairan, sehingga kelimpahan plankton akan semakin meningkat pula dan akan mengurangi tingkat penetrasi cahaya matahari ke dalam perairan. Berdasarkan uraian tersebut maka kecerahan air merupakan suatu variable dari kelimpahan plankton dan tingkat intensitas matahari.

Penetrasi cahaya pada suatu perairan sangat dipengaruhi oleh:

a) Intensitas cahaya yang jatuh pada permukaan air,
b) Kelarutan bahan/zat-zat di dalam air, dan
c) Suspensi bahan dalam air.

Intensitas dankualitas cahaya yang masuk ke dalam air (perairan) dapat menentukan:

a) Aktivitas fotosintesis bagi jasad nabati, yang pada akhirnya menentukan kehidupan hewan dalam air. Proses fotosintesis tersebut adalah sebagai berikut:
\[6\text{H}_2\text{O} + 6\text{CO}_2 \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \]

b) Iklim (keadaan) cahaya pada kedalaman tertentu pada suatu perairan. Cahaya yang diserap ini menghasilkan panas yang sangat penting untuk proses kehidupan hewan dan tumbuhan

7) Kedalaman

Kedalaman merupakan parameter yang penting dalam memecahkan masalah teknik berbagai pesisir seperti erosi. Pertambahan stabilitas garis pantai, pelabuhan dan kontraksi, pelabuhan, evaluasi, penyimpanan pasang surut, pergerakan, pemeliharaan, rute navigasi. Kedalaman juga sangat berpengaruh terhadap penentuan teknologi budidaya perairan yang dilakukan di laut ataupun di perairan tergenang ataupun mengalir.

Kedalaman berhubungan erat dengan Batimetri yang berarti ilmu yang mempelajari kedalaman di bawah air dan studi tentang tiga dimensi lantai samudra atau danau. Sebuah peta batimetri umumnya menampilkan relief pantai atau daratan dengan garis-garis kontur
(contour lines) yang disebut kontur kedalaman (depth contours atau subath).

Berdasarkan kedalammnya perairan laut dapat dikelompokkan menjadi 4 zona, antara lain:

a) Zona Litoral

Zona Litoral yaitu wilayah antara garis pasang dan garis surut air laut. Wilayah ini kadang-kadang kering pada saat air laut surut dan tergenang pada saat air laut mengalami pasang. Zona litoral biasanya terdapat di daerah yang pantainya landai.

Zona litoral adalah bagian dari laut, danau atau sungai yang dekat dengan pantai. Dalam lingkungan pesisir zona pesisir memanjang dari tanda air yang tinggi, yang jarang terendam, untuk daerah pantai yang secara permanen terendam. Ini selalu mencakup ini zona intertidal dan sering digunakan untuk berarti sama dengan zona intertidal. Namun, arti dari “zona litoral” dapat meluas melewat zona intertidal.

b) Zona Neritik

Zona neritik adalah zona laut yang memiliki kedalaman dangkal, sampai kedalaman 200 meter. Zona neritik ini adalah zona indah primadona dengan aneka ragam terumbu karang sekaligus tempat bekumpulnya ikan-ikan. Zona neritik adalah wilayah laut mulai zona pasang surut sampai kedalaman 200 meter, zona ini sering disebut wilayah laut dangkal. Ciri-ciri zona neritik diantaranya:

1. Sinar matahari masih menembus dasar laut
2. Kedalammannya ±200 m
3. Bagian paling banyak terdapat ikan dan tumbuhan laut
Zona neritik berada di paparan benua yang dihuni oleh biota laut yang berbeda dengan zona oseanik karena:

(1) Kandungan zat hara di mintakat neritik melimpah.
(2) Sifat kimia perairan neritik berbeda dengan perairan oseanik karena berbeda-bedanya zat-zat terlarut yang dibawa ke laut dari daratan.
(3) Perairan neritik sangat berubah-ubah, baik dalam waktu maupun dalam ruang, jika dibandingkan dengan perairan oseanik. Hal ini dapat terjadi karena dekatnya mintakat ini dengan daratan dan adanya tumpahan berbagai zat terlarut dari darat ke laut.
(4) Penembusan cahaya, kandungan sedimen dan energi fisik dalam kolom air berbeda antara mintakat neritik dan mintakat oseanik.

c) Zona Batial

Zona Bathyal (wilayah laut dalam), adalah wilayah laut yang memiliki kedalaman antara 150 hingga ± 2000 meter. Wilayah ini tidak dapat ditembus sinar matahari, oleh karena itu kehidupan organismanya tidak sebanyak yang terdapat di zona neritic.

Zona batial laut dimulai dari batas bawah dari rak(biasanya 130-200 m) atas dasar lereng, yang terletak di kedalaman 2000 m zona ini ditandai dengan air yang tenang, tidak adanya cahaya, hewan hidup sangat miskin dan pengaruh yang lemah tanah dengan proses yang terjadi dalam lingkungan. Dengan tidak adanya cahaya di sana, tidak ada tanaman.
d) Zona Abisal

Zona abisal adalah suatu zona di dasar laut yang amat dalam, dimulai dari kedalaman 1000meter sampai 6000meter. Zona ini termasuk kedalam lubuk laut dan palung laut. Tekanan air laut sangat besar sehingga hanya sedikit binatang-binatang laut yang dapat hidup di zona ini. Binatang laut yang dapat hidup di zona ini cenderung pipih dan panjang.

Tepat di atas zona abisal terdapat zona bathyal, daerah yang terakhir mendapatkan cahaya dimana sebagian besar kehidupan laut itu ada. Sedangkan tepat dibawah zona abisal yaitu zona hadal, daerah yang diliputi oleh kegelapan abadi. Materi sedimentasi sangat halus, berupa sejenis lumpur yang kemerah-merahan dan terdiri dari hancuran diatomeadan radiolaria, karena dalam kedalaman sekitar 3000 meter kerangpun sebelum mencapai dasar laut telah hancur dan larut.

Dikarenakan tekanan air di zona abisal ini bertambah satu atmosfersetiap kedalaman 33kaki, hewandi zona abisal harus mampu menahan tekanan yang besar. Tekanan ini membuat manusia sangat sulit untuk mengeksplorasi laut dalam. Contoh binatang yang dapat hidup di zona abisal ini adalah cumi-cumiraksasa.

Karakteristik dari zona ini antara lain cahaya, tekanan, suhu, oksigen, dan makanan. Karena sangat dalam dan gelap, lapisan abysal tidak mendapat cahaya. Sehingga sebagian besar dari makhluk hidup di lapisan ini memiliki tubuh yang menghasilkan cahaya biru-hijau (*bioluminescence*). Selain itu, mereka juga memiliki mata yang lebih besar untuk menangkap cahaya lebih banyak.
8) Kecepatan Arus

Arus di laut disebabkan oleh perbedaan densitas masa air laut, tiupan angin terus menerus diatas permukaan laut dan pasang-surut terutama di daerah pantai. Pasangsurut juga dapat menggantikan air secara total dan terus menerus sehingga perairan terhindar dari pencemaran. Sedangkan distribusi pantai dapat merubah dan meredam arus.

Arus mempunyai pengaruh positif dan negatif bagi kehidupan biotaperairan. Arus dapat menyebabkan ausnya jaringan jasad hidup akibat pengikisan atau teraduknya substrat dasar berlumpur yang berakibat pada kekeruhan sehingga terhambatnya fotosintesa. Pada saat yang lain, manfaat dari arus adalah menyuplai makanan, kelarutan oksigen, penyebaran plankton dan penghilangan CO₂ maupun sisa-sisa produk biota laut (Romimohtarto, 2003).

Pengamatan

Pernahkah anda berkunjung ke air terjun, sungai, pantai atau ke tambak? apakah anda pernah mengamati pergerakan air pada perairan tersebut? dapatkah anda menceritakan pergerakan air yang terjadi pada perairan tersebut dan bagaimana terjadinya? Coba kumpulkan informasi tentang pergerakan air tersebut dan pemanfaatannya bagi umat manusia, diskusikan dengan kelompok anda!
Manfaat dari arus bagi banyak biota adalah menyangkut penambahan makanan bagi biota-biota tersebut dan pembuangan kotoran-kotorannya. Untuk alga kekurangan zat-zat kimia dan CO\textsubscript{2} dapat dipenuhi. Sedangkan bagi binatang, CO\textsubscript{2} dan produk-produk sisa dapat disingkirkan dan O\textsubscript{2} tetap tersedia. Arus juga berperanan penting bagi penyebaran plankton, baik holoplankton maupun meroplankton.

![Gambar 11. Pemanfaatan arus pada budidaya laut](image)

Terutama bagi golongan terakhir yang terdiri dari telur-telur dan burayak-burayak avertebrata dasar dan ikan-ikan. Mereka mempunyai kesempatan menghindari persaingan makanan dengan induk-induknya terutama yang hidup menempel seperti teritip (*Belanus spp.*) dan kerang hijau (*Mytilus viridis*).

Kenyataan yang tidak dapat ditoleransi terhadap kuat maupun lemahnya arus akanmenghambat kegiatan budidaya laut (Ghufron dan Kordi, 2005). Arus juga sangat penting dalam sirkulasi air, pembawa bahan terlarut dan padatan tersuspensi (Dahuri, 2003), serta dapat berdampak pada keberadaan organisme penempel.
Kecepatan aliran air akan bervariasi secara vertikal. Arus air pada perairan lotik umumnya bersifat turbulen yaitu arus air yang bergerak ke segala arah sehingga air akan terdistribusi ke seluruh bagian dari perairan. Arus merupakan gerakan air yang sangat luas terjadi pada seluruh laut di dunia. Arus-arus ini mempunyai arti yang sangat penting dalam menentukan arah pelayaran bagi kapal-kapal.

Kecepatan arus perairan untuk budidaya keramba jaring apung di laut tidak boleh lebih dari 100 cm/detik (Gufron dan Kordi, 2005) dan kecepatan arus bawah 25 cm/detik. Sedangkan untuk rumput laut 20 - 30 cm/detik dan tiram mutiara berkisar 15 – 25 cm/detik (DKP, 2002)

Pada ekosistem lentik arus dipengaruhi oleh kekuatan angin, semakin kuat tiupan angin akan menyebabkan arus semakin kuat dan semakin dalam mempengaruhi lapisan air. Pada perairan lotik umumnya kecepatan arus berkisar antara 3 m/detik. Meskipun demikian sangat sulit untuk membuat suatu batasan mengenai kecepatan arus. Karena arus di suatu ekosistem air sangat berfluktuasi dari waktu ke waktu tergantung dari fluktuasi debit dan aliran air dan kondisi substrat yang ada.

Kecepatan arus sungai dipengaruhi oleh kemiringan, kesuburan kadar sungai. Kedalaman dan kelebaran sungai, sehingga kecepatan arus di sepanjang aliran sungai dapat berbeda-beda yang selanjutnya akan mempengaruhi jenis substrat sungai.
Gambar 12. Pemanfaatan arus sungai untuk kegiatan rekreasi

Adanya pergerakan air ini, mengakibatkan terjadinya perputaran (sirkulasi) panas, zat-zat terlarut dan jasad-jasad perairan. Dengan pergerakan air ini menimbulkan aliran yang tidak tetap (turbulensi) dan kecepatan massa air. Gerak turbulensi yang menjadi besar biasa disebut “sistem arus” yang terdiri dari:

a) **Sistem arus tidak periodik.**

Sistem arus ini merupakan arus aliran satu arah. Pergerakan air ini disebabkan oleh:

1. Perbedaan penyebaran panas,
2. Adanya penambahan air dari luar,
3. Pengaruh angin.

b) **Sistem arus periodik.**

Sistem arus ini terdiri dari dua bagian yang penting yaitu:
• Gelombang permukaan.
Gelombang permukaan ini terjadi akibat reaksi antara tahanan permukaan air dengan angin yang berhembus yang menyebabkan pergerakan air. Besarnya gelombangpermukaan ini sangat dipengaruhi oleh kecepatan angin, dan besarnya perubahan kecepatan angin menjadi energi kinetik dan energi potensial gelombang. Pengaruh gelombang ini terbatas pada lapisan air yang paling atas dan tidak berpengaruh pada pemindahan massa air yang lebih besar.

• Seiche.

9) Debit Air

Pengamatan - Eksplorasi

Apakah anda pernah memperhatikan kolam yang sedang diisi air? Coba anda amati dan perhatikan aliran air yang masuk ke dalam kolam tersebut, berapa lama kolam tersebut penuh terisi air? Coba lakukan percobaan tersebut dan catatlah waktu yang dibutuhkan serta informasi lebih banyak tentang DEBIT AIR! Kemudian paparkan dalam kelas!
Debit air merupakan ukuran banyaknya volume air yang dapat lewat dalam suatu tempat atau yang dapat di tampung dalam suatu tempat tiap satu satuan waktu. Aliran air dikatakan memiliki sifat ideal apabila air tersebut tidak dapat dimanfaatkan dan berpindah tanpa mengalami gesekan, hal ini berarti pada gerakan air tersebut memiliki kecepatan yang tetap pada masing-masing titik dalam pipa dan gerakannya beraturan akibat pengaruh gravitasi bumi.

Dalam hidrologi dikemukakan, debit air sungai adalah, tinggi permukaan air sungai yang terukur oleh alat ukur pemukaan air sungai. Pengukurannya dilakukan tiap hari, atau dengan pengertian yang lain debit atau aliran sungai adalah laju aliran air (dalam bentuk volume air) yang melewati suatu penampang melintang sungai per satuan waktu. Dalam sistem satuan SI besarnya debit dinyatakan dalam satuan meter kubik per detik (m³/dt).

Kemampuan pengukuran debit aliran sangat diperlukan untuk mengetahui potensi sumberdaya air di suatu wilayah DAS. Debit aliran dapat dijadikan sebuah alat untuk memonitor dan mengevaluasi neraca air suatu kawasan melalui pendekatan potensi sumberdaya air permukaan yang ada.

Pada aliran sungai, debit terjadi karena adanya aliran air dari satu atau beberapa sumber air yang berada di ketinggian, misalnya disebuah puncak bukit atau gunung yang tinggi, dimana air hujan sangat banyak jatuh di daerah itu, kemudian terkumpul dibagian yang cekung, lama kelamaan dikarenakan sudah terlalu penuh, akhirnya mengalir keluar melalui bagian bibir cekungan yang paling mudah tergerus air, selanjutnya air itu akan mengalir di atas permukaan tanah yang paling rendah, mungkin mula mula merata, namun karena ada bagian- bagian dipermukaan tanah yang tidak begitu keras, maka mudah terkikis,
sehingga menjadi alur alur (seperti sungai) yang tercipta makin hari makin panjang, seiring dengan makin deras dan makin seringnya air mengalir pada alur tersebut, maka semakin panjang dan semakin dalam, alur itu akan berbelok, atau bercabang, apabila air yang mengalir terhalang oleh batu sebesar alur itu, atau batu yang banyak. Demikian juga dengan sungai di bawah permukaan tanah, terjadi dari air yang mengalir dari atas, kemudian menemukan bagian-bagian yang dapat ditembus ke bawah permukaan tanah dan mengalir ke arah dataran rendah yg rendah. Lama kelamaan sungai itu akan semakin lebar.

10) Padatan Tersuspensi Total (TSS)

Total suspended solid atau padatan tersuspensi total (TSS) adalah residu dari padatan total yang tertahan oleh saringan dengan ukuran partikel maksimal 2μm atau lebih besar dari ukuran partikel koloid. TSS menyebabkan kekeruhan pada air akibat padatan tidak terlarut dan tidak dapat langsung mengendap. TSS terdiri dari partikel-partikel yang ukuran maupun beratnya lebih kecil dari sedimen, misalnya tanah liat, bahan-bahan organik tertentu, sel-sel mikroorganisme, dan sebagainya.

Yang termasuk TSS adalah lumpur, tanah liat, logam oksida, sulfida, ganggang, bakteri dan jamur. TSS umumnya dihilangkan dengan flokulasi dan penyaringan. TSS memberikan kontribusi untuk kekeruhan (turbidity) dengan membatasi penetrasi cahaya untuk fotosintesis dan visibilitas di perairan. Sehingga nilai kekeruhan tidak dapat dikonversi ke nilai TSS.

Kekeruhan adalah kecenderungan ukuran sampel untuk menyebarkan cahaya. Sementara hamburan diproduksi oleh adanya partikel tersuspensi dalam sampel. Kekeruhan adalah murni sebuah sifat optik. Pola dan intensitas sebaran akan berbeda akibat perubahan dengan
ukuran dan bentuk partikel serta materi. Sebuah sampel yang mengandung 1.000 mg/L dari *fine talcum powder* akan memberikan pembacaan yang berbeda kekeruhan dari sampel yang mengandung 1.000 mg/L *coarsely ground talc*. Kedua sampel juga akan memiliki pembacaan yang berbeda kekeruhan dari sampel mengandung 1.000 mg/L *ground pepper*. Meskipun tiga sampel tersebut mengandung nilai TSS yang sama.

TSS merupakan tempat berlangsungnya reaksi-reaksi kimia yang heterogen, dan berfungsi sebagai bahan pembentuk endapan yang paling awal dan dapat menghalangi kemampuan produksi zat organik di suatu perairan (Tarigan dan Edward, 2003).

11) Padatan Terlarut Total (TDS)

Total Dissolve Solid (TDS) yaitu ukuran zat terlarut (baik itu zat organik maupun anorganik) yang terdapat pada sebuah larutan. TDS menggambarkan jumlah zat terlarut dalam *part per million* (ppm) atau sama dengan milligram per liter (mg/L). Umumnya berdasarkan definisi diatas seharusnya zat yang terlarut dalam air (larutan) harus dapat melewati saringan yang berdiameter 2 micrometer (2×10^{-6} meter). Aplikasi yang umum digunakan adalah untuk mengukur kualitas cairan pada pengairan, pemeliharaan aquarium, kolam renang, proses kimia, pembuatan air mineral, dan lain-lain (Misnani, 2010).

Total padatan terlarut dapat pula merupakan konsentrasi jumlah ion kation (bermuatan positif) dan anion (bermuatan negatif) di dalam air. Analisa total padatan terlarut merupakan pengukuran kualitatif dari jumlah ion terlarut, tetapi tidak menjelaskan pada sifat atau hubungan ion. Selain itu, pengujian tidak memberikan wawasan dalam masalah kualitas air yang spesifik. Oleh karena itu, analisa total padatan terlarut
digunakan sebagai uji indikator untuk menentukan kualitas umum dari air. Sumber padatan terlarut total dapat mencakup semua kation dan anion terlarut (Oram, B., 2010).

12) Pasang Surut

Pasang merupakan suatu gelombang yang frekuensinya rendah dan pada umumnya intensitas terjadinya lebih kecil dari dua kali sehari. Pergerakan pasang ini disebabkan oleh adanya gaya tarik dari benda-benda angkasa terhadap massa air di bumi. Gerakan ini juga dipengaruhi oleh rotasi bumi sendiri serta letak pulau dan benua. Oleh sebab itu tinggi rendahnya gerakan pasang di bumi terutama ditentukan oleh jarak atau letak matahari dan bulan terhadap bumi.

Secara keseluruhan, resultanta gaya pada sistem bulan-bumi ini sama dengan nol. Namun demikian, tiap individu partikel yang ada di permukaan bumi mengalami gaya yang berbeda-beda terhadap bulan. Demikian pula halnya dengan gaya sentrifugal yang dialami titik pada permukaan bumi akan berbeda-beda akibatnya, resultanta gaya-gaya ini

Kegiatan Belajar (5M)

berbeda-beda pada tiap titik di bumi. Gaya inilah yang dikenal sebagai gaya “pembangkit pasang” (*Tide generating force*).

Dengan adanya gaya tarik bulan yang kuat, maka massa air pada bagian bumi yang terdekat ke bulan akan tertarik membengkak sehingga perairan di tempat tersebut akan naik dan menimbulkan pasang. Pada saat yang sama, bagian bumi dibaliknya akan mengalami pasang pula. Sedang sisi lainnya yang tegak lurus pada poros bumi-bulan akan mengalami surut.

Faktor yang lebih penting mempengaruhi besarnya pasang adalah posisi bulan-matahari terhadap bumi. Jika bulan terdapat antara bumi dan matahari, ketiga benda angkasa ini berada pada garis lurus disebut bulan baru (*new moon*). Sedang bila bumi terletak diantara bulan dan matahari disebut bulan purnama (*full moon*).

Bulan berputar mengelilingi bumi sekali dalam 24 jam 51 menit, jika faktor-faktor lain diabaikan maka suatu lokasi di bumi akan mengalami dua kali pasang dan dua kali surut dalam sehari yang dikenal dengan istilah pasang berganda (*semi diurnal tides*), dimana tiap siklus pasang-surut akan bergeser mundur selama 51 menit setiap hari.

Pada posisi bulan baru dan purnama, pengaruh bulan terhadap pasang diperkuat oleh pengaruh matahari, dimana pasang yang ditimbulkan
besar sekali dan iniah yang disebut pasang purnama (*spring tide*). Jika posisi matahari-bumi-bulan membentuk sudut 90 derajat, pengaruh bulan diperkecil oleh pengaruh matahari, sehingga pasang yang ditimbulkan sangat kecil disebut pasang perbani (*neap tide*). Waktu yang dibutuhkan dari pasang purnama ke pasang perbani tidak selamanya sama dengan waktu yang dibutuhkan dari pasang purnama ke pasang purnama. Jarak waktu rata-rata pasang purnama ke pasang purnama berikutnya adalah 14,7 hari.

![Mekanisme pasang surut air laut](image)

Gambar 13. Mekanisme pasang surut air laut

Kisaran pasang surut (*tidal ranges*), yaitu perbedaan tinggi air pada saat pasang maksimum dengan tinggi air pada saat surut minimum, rata-rata berkisar antara 1 meter hingga 3 meter. Sebagai contoh, di Tanjung Priok Jakarta hanya sekitar 1 meter, Ambon sekitar 2 meter, Bagan Siapi-api sekitar 4 meter, sedangkan yang tertinggi di muara Sungai Digul dan Selat Muli di Irian Jaya dapat mencapai sekitar 7 sampai 8 meter.
Faktor-faktor alam yang dapat mempengaruhi terjadinya pasang surut antara lain; dasar perairan, letak benua dan pulau serta pengaruh gaya coriolis. Dasar perairan, terutama pada perairan dangkal, memperlambat perambatan gerakan pasang sehingga suatu tempat dapat mempunyai Lunital Interval yang besar. Tahanan dasar dapat juga meredam energi pasang, sehingga pada perairan tertentu pasang sangat kecil. Pantai atau pulau dapat menyebabkan pematahan (refraksi) atau pemantulan (refleksi) gelombang pasang. Demikian pula gaya coriolis dapat mengubah perambatan pasang (Boyd, 1982).

Akibat adanya fenomena peredaman, pematahan dan pemantulan, maka komponen pasang mengalami perubahan tidak sama. Beberapa tempat misalnya hanya mengalami pasang naik satu kali, sedangkan di tempat lain terjadi dua kali pasang dan ada pula kombinasi dari kedua fenomena ini.

Dilihat dari pada gerakan permukaan laut, maka pasang surut di Indonesia dibagi menjadi 4 jenis, yaitu;

a) Pasang surut harian tunggal (diurnal tide), yaitu terjadi satu kali pasang dan satu kali surut dalam sehari, misalnya di Selat Karimata.

b) Pasang surut harian ganda (semi diurnal), yaitu terjadi dua kali surut dalam sehari, misalnya di Selat Malaka dan Laut Andaman.

c) Pasang surut campuran condong ke harian ganda (mixed tide prevailing semi diurnal), yaitu terjadi dua kali surut sehari yang berbeda dalam tinggi dan waktu, misalnya di perairan Indonesia Timur.

d) Pasang surut campuran condong ke harian tunggal (Mixed tide prevailing diurnal), yaitu terjadi satu kali pasang dan satu kali surut dalam sehari yang sangat berbeda dalam tinggi dan waktunya, misalnya di pantai selatan Kalimantan dan pantai utara Jawa Barat.
Pengetahuan pasang surut dalam dunia pelayaran sangat berguna sekali, terutama jika mengetahui jadwal pasang surut di suatu pelabuhan, maka dengan mudah sebuah kapal dapat masuk dan meninggalkan pelabuhan tersebut. Demikian pula energi yang ditimbulkan oleh arus pasang surut dalam jumlah besar dapat dimanfaatkan sebagai pembangkit tenaga listrik. Sedangkan khusus dalam dunia perikanan, fenomena pasang surut dapat dimanfaatkan untuk menangkap jenis-jenis ikan pantai dengan menggunakan alat perangkap, seperti bubu dan sero. Demikian pula fenomena ini dapat dimanfaatkan dalam melakukan penggantian air di tambak.

13) Berat Jenis Air

Berat jenis air pada tempat dan waktu yang berlainan akan berbeda. Perbedaan ini, walaupun sangat kecil, tetapi pengaruhnya sangat penting terhadap organisme didalam air. Pengaruh berat jenis terhadap kehidupan organisme di dalam air adalah adanya kemampuan air tersebut untuk mengapungkan organisme dan benda lainnya. Berat jenis dipengaruhi oleh:

1. Tekanan (pressure).
2. Kadar garam terlarut dalam air.
4. Suhu.
a) Pengaruh tekanan dan zat tertentu terhadap berat jenis air

Tekanan hidrostatik merupakan faktor lingkungan yang penting bagi organisme laut dalam. Semakin dalam perairan semakin tinggi pula tekanan hidrostatiknya. Setiap turun sedalam 10 meter, tekanan hidrostatik meningkat sebesar 1 kg/sentimeter persegi atau 1 atmosfir. Dapat dibayangkan bahwa pada kedalaman 7.000 meter atau daerah hadal dimana setiap hewan yang hidup pada kedalaman tersebut harus mampu menghadapi tekanan yang cukup besar yaitu sebesar kira-kira 700 atmosfir. Suatu tekanan yang luar biasa besarnya. Sudah dapat dipastikan bahwa yang hidup pada
kedalaman tersebut adalah yang telah terbiasa menghadapi keadaan yang ekstrim.

Pengaruh tekanan terhadap berat jenis air adalah pada tekanan yang lebih tinggi, berat jenis maksimum berkurang. Kenaikan 10 atmosfir (kira-kira 100 m di bawah permukaan) suhu dari berat jenis air maksimum berkurang sebesar kira-kira 0,1°C. Selanjutnya, pengaruh unsur-unsur tertentu seperti garam-garam terlarut dapat menurunkan suhu dari berat jenis air maksimum. Penurunan suhu oleh garam tersebut adalah sebesar 0,2°C untuk setiap kenaikan kadar garam 1‰. Jadi di laut yang mempunyai kadar garam 35‰, suhu dari berat jenis air maksimum adalah -3,52°C dan hal ini tidak akandicapai pada tekanan normal.

\[\text{b) Pengaruh kadar garam terhadap berat jenis air}\]

Berat jenis air akan bertambah dengan bertambahnya kadar garam. Pada Tabel 1 merupakan gambaran tentang perubahan berat jenis air dalam hubungannya dengan kadar garam dalam air. Hal ini disebabkan karena tidak semua perairan mengandung kadar bahan terlarut (bahan tersusupensi) yang sama.

\[
\begin{array}{|c|c|}
\hline
\text{Kadar garam (‰)} & \text{Berat Jenis Air (pada suhu 4°C)} \\
\hline
0 & 1,00000 \\
1 & 1,00850 \\
2 & 1,00169 \\
3 & 1,00251 \\
10 & 1,00818 \\
35 & 1,02822 \\
\hline
\end{array}
\]

Tabel 1. Pengaruh kadar garam (bahan terlarut) terhadap berat jenis air.
c) **Pengaruh suhu terhadap berat jenis air**

Perubahan berat jenis air yang disebabkan oleh perubahan suhu merupakan hal yang penting. Air mempunyai sifat bahwa berat jenisnya tidak bertambah dengan menurunnya suhu, tetapi mencapai nilai maksimum pada suhu 4ºC (tepatnya 3,94ºC). Setelah mencapai nilai maksimum pada suhu 4ºC, lalu berkurang sedikit demi sedikit dan tepat pada waktu membeku mengalami penurunan berat jenis secara drastis.

Terlepas dari sifat anomaly air, perbedaan berat jenis air yang kecil akibat pengaruh perubahan suhu adalah amat penting bagi kejadian di dalam air. Dengan kata lain, perbedaan jenis air akan mempengaruhi proses kehidupan di dalam suatu perairan.

14) Kekentalan

Kekentalan air merupakan sifat fisika air yang tidak boleh diabaikan. Hal ini merupakan akibat dari tahanan gesekanyang ditimbulkan oleh suatu zat cair pada benda bergerak. Besarnya tahanan gesekan ini sebanding dengan:

a) Luas permukaan benda yang berhubungan dengan air.

b) Kecepatan gerak benda.

c) Konstanta yang tergantung pada suhu dan sifat-sifat zat cair.
Faktor-faktor yang mempengaruhi kekentalan air, antara lain adalah suhu. Faktor suhu sangat berpengaruh terhadap kekentalan air, jika suhu naik, maka kekentalan air akan menurun, sehingga kekentalan air pada suhu 0ºC dua kali lebih besar daripada suhu 25ºC pada keadaan faktor lainnya sama (Tabel 2). Jasad plankton pada suhu 25ºC akan tenggelam dua kali lebih cepat daripada 0ºC.

Tabel 2. Hubungan antara kekentalan air dengan suhu.

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>Kekentalan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100,0</td>
</tr>
<tr>
<td>5</td>
<td>84,9</td>
</tr>
<tr>
<td>10</td>
<td>73,0</td>
</tr>
<tr>
<td>15</td>
<td>63,7</td>
</tr>
<tr>
<td>20</td>
<td>56,1</td>
</tr>
<tr>
<td>25</td>
<td>49,8</td>
</tr>
<tr>
<td>30</td>
<td>44,6</td>
</tr>
</tbody>
</table>

Kekentalan air kira-kira 100 kali lebih besar daripada udara, maka hewan-hewan air harus mengatasi tekanan yang lebih besar jika dibandingkan dengan hewan yang hidup di udara. Hal ini menunjukkan bahwa kekentalan air dapat menentukan:

- a) Kebiasaan hidup organisme.
- b) Bentuk tubuh (morfologi) dari hewan air.
- c) Penggunaan energi oleh hewan-hewan air.
- d) Merupakan penghalang besar bagi pergerakannya.

15) **Tegangan Permukaan (Buoyancy)**

Tegangan permukaan air timbul akibat aktivitas molekul-molekul air yang tidak seimbang pada dan di bawah permukaan air. Molekul-molekul air itu mempunyai daya tarik menarik terhadap molekul-
molekul tetangganya, walaupun mereka mempunyai kecenderungan untuk bergerak sendiri-sendiri.

Dalam fase cair, daya tarik-menarik masih cukup besar sehingga molekul-molekul zat cair itu masih tetap ingin berkumpul, yang dinamakan adanya sifat kohesi di dalam cairan tersebut. Pada bagian permukaannya yang berhubungan dengan udara, ada beberapa molekul air yang melepaskan diri dari ikatannya dengan molekul-molekul yang lain yang disebut dengan penguapan.

Pada permukaan air ini akan ada suatu tegangan juga yang membentuk semacam "kulit" permukaan. Binatang-binatang dan tumbuh-tumbuhan yang ringan dapat berjalan atau bergerak di atas "kulit" permukaan air ini. Contoh pengaruh tegangan permukaan dapat dilihat pada Gambar 15.

Faktor-faktor yang mempengaruhi tegangan permukaan air adalah:

a) Suhu; pada suhu tinggi tegangan permukaan air berkurang.
b) Bahan organik dan garam-garam terlarut. Kenaikan kadar garam menyebabkan kenaikan tegangan permukaan.
Gambar 15. Serangga yang dapat bertahan di atas permukaan air akibat tegangan permukaan

Eksplorasi

Isilah air dalam wadah ember atau baskom, setelah terisi penuh lalu coba anda sobek sebanyak kertas buat kertas berukuran ±0,5 cm2, 2 cm2, 5 cm2 dan 8 cm2. Setelah kertas siap, letakkan masing-masing kertas pada wadah yang telah berisi air tersebut secara bergantian, letakkan kertas secara perlahan-lahan, amati amati yang terjadi! Bandingkan masing-masing pada kertas yang berbeda ukuran!

Catat dan analisis lah tentang hasil yang anda peroleh, diskusikan di dalam kelas!
Air tidak pernah terdapat dalam keadaan benar-benar murni. Bahan/unsur yang terdapat di dalam air umumnya berasal dari tanah, udara dan metabolisme jasad air. Unsur-unsur/bahan tersebut dapat dikategorikan dalam tiga golongan yaitu: (1) gas, (2) unsur anorganik, dan (3) organik. Distribusi ketiga golongan unsur/bahan kimia tersebut di atas, sangat menentukan sifat-sifat kimia air. Unsur-unsur/bahan kimia yang terdapat dalam air ada yang dapat larut dan ada yang tidak larut. Pada umumnya unsur anorganik merupakan unsur kimia yang dapat larut,

b. Parameter Kimia

Kegiatan Pembelajaran (5M)

Datanglah ke lokasi budidaya perairan misalnya, kolam tanah, kolam beton, tambak, atau karamba jaring apung. Coba amati tingkah laku ikan yang sehat mulai dari gerakannya hingga nafsu makannya! kemudian datanglah ke lokasi budidaya yang ditemukan banyak ikan mati atau sakit, coba amati kondisi perairannya! lakukan pengamatan terhadap kualitas airnya, catat perbedaan kondisi kualitas air serta lakukan wawancara dengan pembudidayanya tentang kondisi perairan!

Setelah anda mendapatkan informasi dari hasil wawancara, coba anda bandingkan hasil pengamatan kualitas air yang telah anda lakukan!

Diskusikan dengan kelompok anda tentang faktor-faktor yang mempengaruhi kesehatan dan kematian ikan budidaya tersebut, lalu sampaikan dalam kelas!
kecuali unsur belerang (S). Oleh sebab itu di dalam air, unsur-unsur tersebut digolongkan atas unsur “makro dan mikro”. Parameter kimia yang berpengaruh terhadap kehidupan biota air antara lain:

1) Derajat keasaman (pH air)

Derajat keasaman sering dikenal dengan istilah pH (puissance negative de H) yaitu logaritma dari kepekatan ion-ion H (hydrogen) yang terlepas dalam suatu cairan. Ion hidrogen bersifat asam. Keberadaan ion hidrogen menggambarkan nilai pH (derajat keasaman) pada suhu tertentu atau dapat ditulis dengan persamaan pH = - log [H⁺].

Air murni (H₂O) berasosiasi secara sempurna sehingga memiliki ion H⁺ dan ion H⁻ dalam konsentrasi yang sama dan membentuk kesetimbangan seperti:

\[
2H₂O ↔ H₃O⁺ + OH⁻
\]

(Ion hidronium) (Ion hidroksil)

\[
H₂O ↔ H⁺ + OH⁻
\]

Oleh karena itu, pH air murni memiliki nilai 7. Semakin tinggi konsentrasi ion H⁺, maka ion OH⁻ akan semakin rendah, sehingga pH mencapai nilai < 7 (perairan asam). Sebaliknya, apabila konsentrasi ion OH⁻ lebih tinggi dibandingkan dengan konsentrasi ion H⁺, maka perairan tersebut sifatnya basa karena memiliki nilai pH > 7.

Ion hidrogen merupakan unsur yang sangat berpengaruh terhadap faktor kimia lainnya, seperti alkalinitas, kesadahan dan keasaman air. Ada dua cara dalam mengungkapkan (merumuskan) tentang ion H dalam air yaitu:

a) Merupakan jumlah molekul ion hidrogen per liter air.

b) pH air yang dirumuskan seperti berikut:

c) \[\text{pH} = - \log(\text{H}⁺) \]
Kadar ion H atau pH dalam air merupakan salah satu faktor kimia yang sangat berpengaruh terhadap kehidupan organisme yang hidup dalam suatu lingkungan perairan. Dari kedua ungkapan tersebut menunjukkan pH air dapat diukur dan nilai pH berkisar antara 0-14. Pada pH tertentu dapat menggambarkan keadaan air apakah asam atau basa. Tinggi atau rendahnya nilai pH air tergantung pada beberapa faktor yaitu:

a) Konsentrasi gas-gas dalam air seperti CO$_2$

b) Konsentrasi garam-garam karbonat dan bikarbonat

c) Proses dekomposisi bahan organik di dasar perairan.

Secara alamiah, pH perairan dipengaruhi oleh konsentrasi karbon dioksida (CO$_2$) dan senyawa bersifat asam. Perairan umum dengan aktivitas fotosintesis dan respirasi organisme yang hidup didalamnya akan membentuk reaksi berantai karbonat – karbonat sebagai berikut:

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \rightarrow \text{2H}^+ + \text{CO}_3^{2-}
\]

Semakin banyak CO$_2$ yang dihasilkan dari hasil respirasi, reaksi bergerak ke kanan dan secara bertahap melepaskan ion H$^+$ yang menyebabkan pH air turun. Reaksi sebaliknya terjadi pada peristiwa fotosintesis yang membutuhkan banyak ion CO$_2$, sehingga menyebabkan pH air naik. Pada peristiwa fotosintesis, fitoplankton dan tanaman air lainnya akan mengambil CO$_2$ dari air selama proses fotosintesis sehingga mengakibatkan pH air meningkat pada siang hari dan menurun pada waktu malam hari.
Tabel 3. Pengaruh pH terhadap komunitas biologi perairan

<table>
<thead>
<tr>
<th>Nilai pH</th>
<th>Pengaruh Umum</th>
</tr>
</thead>
</table>
| 6,0 – 6,5 | a. keanekaragaman plankton dan bentos sedikit menurun
| | b. kelimpahan total, biomassa dan produktivitas tidak mengalami perubahan |
| 5,5 – 6,0 | ▪ penurunan nilai keanekaragaman plankton dan bentos semakin tampak
| | ▪ kelimpahan total, biomassa dan produktivitas masih belum mengalami perubahan yang berarti
| | ▪ alga hijau berfilamen mulai tampak pada zona litoral |
| 5,0 – 5,5 | ▪ penurunan keanekaragaman dan komposisi jenis plankton, perifiton dan bentos semakin besar
| | ▪ terjadi penurunan kelimpahan total dan biomass zooplankton dan bentos
| | ▪ alga hijau berfilamen semakin banyak
| | ▪ proses nitrifikasi terhambat |
| 4,5 – 5,0 | ▪ penurunan keanekaragaman dan komposisi jenis plankton, perifiton dan bentos semakin besar
| | ▪ penurunan kelimpahan total dan biomass zooplankton dan bentos
| | ▪ alga hijau berfilamen semakin banyak
| | ▪ proses nitrifikasi terhambat |

Konsentrasi ion H dalam air mempunyai pengaruh terhadap organisme baik secara langsung maupun tidak langsung. Ada dua hal penting mengenai pH air terhadap kehidupan organisme dalam air yaitu:

1. Merupakan faktor pembatas karena organisme tertentu dapat hidup dengan baik pada pH rendah, sedang organisme yang lain hidup pada pH tinggi atau pH netral (pH 7).
2. pH sangat erat kaitannya atau merupakan petunjuk terhadap faktor kimia lain-nya seperti alkalinitas dan kesadahan.
Nilai pH pada banyak perairan alami berkisar antara 4 – 9, kehadiran CO₂ dan sifat basa yang kuat dari ion natrium, kalium dan kalsium dalam air laut cenderung mengubah keadaan ini, sehingga air laut sedikit lebih basa berkisar antara 7,5 – 8,4. Sistem karbon dioksida – asam karbonat – bikarbonat berfungsi sebagai buffer yang dapat mempertahankan pH air laut dalam suatu kisaran yang sempit. pH air mempengaruhi tingkat kesuburan perairan karena mempengaruhi kehidupan jasad renik. Perairan asam akan kurang produktif, malah dapat membunuh hewan budidaya. Pada pH rendah kandungan oksigen terlarut akan berkurang, sebagai akibatnya konsumsi oksigen menurun, aktifitas pernafasan menurun, aktifitas pernafasan naik dan selera makan akan berkurang, hal sebaliknya terjadi pada suasana basa. Atas dasar ini maka usaha budidaya perairan akan berhasil baik dalam air dengan pH 6,5 – 9,0 dengan kisaran optimal 7,5 – 8,7.

Tabel 4. Hubungan antara pH air dan kehidupan ikan budidaya

<table>
<thead>
<tr>
<th>pH air</th>
<th>Pengaruh terhadap budidaya perikanan</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4,5</td>
<td>Air bersifat racun bagi ikan</td>
</tr>
<tr>
<td>5 – 6,5</td>
<td>Pertumbuhan ikan terhambat dan ikan sangat sensitive terhadap bakteri dan parasit</td>
</tr>
<tr>
<td>6,5 – 9,0</td>
<td>Ikan mengalami pertumbuhan optimal</td>
</tr>
<tr>
<td>>9,0</td>
<td>Pertumbuhan ikan terhambat</td>
</tr>
</tbody>
</table>

a) Oksigen terlarut (DO)

Oksigen terlarut diperlukan oleh hampir semua bentuk kehidupan akuatik untuk proses pembakaran dalam tubuh. Beberapa bakteri dan binatang dapat hidup tanpa O\(_2\) (anaerobik) sama sekali; lainnya dapat hidup dalam keadaan anaerobik hanya sebentar, tetapi memerlukan penyediaan O\(_2\) yang berlimpah setiap saat. Kebanyakan dapat hidup dalam keadaan kandungan O\(_2\) yang rendah sekali, tapi tak dapat hidup tanpa O\(_2\) sama sekali.

Keadaan oksigen dalam air sangat mempengaruhi kehidupan organisme, baik secara langsung maupun tidak langsung. Sedangkan keadaan oksigen dalam air sangat dipengaruhi oleh beberapa faktor antara lain adalah suhu.

b) **Sumber oksigen terlarut**

Oksigen terlarut dalam air diperoleh dari:

1. Langsung dari udara.

 Penyerapan oksigen dari udara dapat dengan melalui dua cara yaitu:

 - Dengan difusi langsung dari atmosfir (udara),
 - Dengan melalui pergerakan air yang teratur seperti gerakan gelombang, air terjun dan perputaran (rotasi) air.

2. Hasil fotosintesis dari tanaman berklorofil.
 Aktivitas tanaman berklorofil melepaskan oksigen langsung ke dalam air melalui asimilasi karbondioksida(fotosintesis) sebagai berikut:

 \[
 6\text{H}_2\text{O} + 6\text{CO}_2 \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2
 \]

 Jumlah oksigen yang diperolehdari hasil fotosintesisistumbuhan tergantung pada dua faktor yaitu:
- Jumlah tanaman air dalam suatu perairan (konsentrasi fitoplankton dalam air).
- Lamanya cahaya yang efektif diterima oleh tanaman air.

Gambar 16. Kincir angin yang berfungsi untuk pengadukan, sebagai salah satu upaya untuk meningkatkan kadar oksigen dalam air

Di perairan-perairan umum, pemasukan oksigen ke dalam air itu dibawa pulaeleh aliran air yang masuk. Aliran air ini akan mengaduk-adaukair, sehingga mendorong proses difusi yang telah dibicarakan di atas. Air yang mengalir, walaupun debitnya kecil, membawa oksigen baru yang sudah larut air yang datang dari tempat lain.

Hujan yang jatuhpun ikut menambah pemasukan oksigen ke dalam air.

Biasanya, jatuhnya hujan itu mengakibatkan turunnya suhu juga. Hal ini akan menyebabkan peningkatan kemampuan air untuk...
mengikat oksigen lebih banyak. Selain itu, hujan akan menambah volume air yang sekaligus juga menambah oksigen terlarut pada perairan tersebut.

c) **Menurunnya kadar oksigen.**
Pada dasarnya proses penurunan oksigendalamairdisebabkan oleh proses kimia, fisikadan biologi yaitu:

- Proses pernafasan (respirasi) baik oleh hewan maupun tanaman.
- Proses penguraian (dekomposisi) bahan organik.
- Tingkat kejenuhan gas-gas dalam air seperti karbon dioksida.
- Proses penguapan (evaporasi) di musim panas.
- Peresapan air ke dalam tanah dasar perairan

d) **Kelarutan oksigen**
Tabel 5. Kelarutan oksigen pada suhu berbeda

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>Oksigen (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14,62</td>
</tr>
<tr>
<td>5</td>
<td>12,80</td>
</tr>
<tr>
<td>10</td>
<td>11,33</td>
</tr>
<tr>
<td>15</td>
<td>10,15</td>
</tr>
<tr>
<td>20</td>
<td>9,17</td>
</tr>
<tr>
<td>25</td>
<td>8,38</td>
</tr>
<tr>
<td>30</td>
<td>7,63</td>
</tr>
</tbody>
</table>

Kelarutan oksigen tersebut berlaku untuk air tawar, sedangkan kelarutan oksigen pada air laut relatif lebih rendah 1–5 ppm dari angka tersebut di atas karena pengaruh salinitas (kadargaram). Kadar garam ini mempengaruhi kelarutan gas-gas air

Kelarutan oksigen ini sangat penting karena menentukan jumlah (kadar) oksigen terlarut dalam air. Besarnya kandungan oksigen di dalam air pada suatu perairan sangat menentukan kehidupan organisme air. Batas-batas toleransi organisme terhadap kadar oksigen tergantung pada jenis organisme tersebut dalam air. Secara umum batas minimum kadar oksigen yang mendukung kehidupan organisme akuatik adalah 3-5 ppm.

Selain untuk proses respirasi, oksigen juga mempengaruhi kehidupan organisme yang lain yaitu:
1. Menambah nafsu makan ikan atau organisme air lainnya.
2. Mempengaruhi kesehatan ikan, yang mana pada batas 12 ppm akan menimbulkan penyakit yang disebabkan oleh gelembung gas (gas bubble diseases)
3. Mempengaruhi fungsi fisiologis dan lambatnya pertumbuhan ikan, bahkan dapat menyebabkan kematian
4. Mempengaruhi proses penguraian dan perombakan bahan organik yang ada didasar kolam
Konsentrasi oksigen terlarut dalam perairan mengalami fluktuasi selama sehari semalam (24 jam). Konsentrasi terendah terjadi pada waktu subuh (dini hari) kemudian meningkat pada siang hari dan menurun kembali pada malam hari. Perbedaan konsentrasi oksigen terlarut tertinggi terdapat pada perairan yang mempunyai kepadatan planktonnya tinggi dan sebaliknya.

Kelarutan oksigen dalam air dipengaruhi oleh beberapa faktor antara lain suhu, kadar garam (salinitas) perairan, pergerakan air dipermukaan air, luas daerah permukaan perairan yang terbuka, tekanan atmosfer dan persentase oksigen sekelilingnya. Bila pada suhu yang sama konsentrasi oksigen terlarut sama dengan jumlah kelarutan oksigen yang ada di dalam air, maka air tersebut dapat dikatakan sudah jenuh dengan oksigen terlarut. Bila air mengandung lebih banyak oksigen terlarut daripada yang seharusnya pada suhu tertentu, berarti oksigen dalam air tersebut sudah lewat jenuh (super saturasi).

2) Karbondioksida bebas (CO₂)

Karbondioksida dalam air, dapat berupa gas karbondioksida bebas (CO₂), ion bikarbonat (HCO₃⁻), ion karbonat (CO₃²⁻) dan asam karbonat (H₂CO₃). Karbondioksida bebas ini diperlukan dalam proses fotosintesis oleh tumbuhan berhijauan. Sedangkan garam karbonat dan bikarbonat terutama garam kalsium diperlukan untuk menyangga pH air.

Karbondioksida bersenyawa dengan air membentuk asam karbonat (H₂CO₃) yang menghasilkan kondisi asam dalam perairan menjadi H⁺ dan HCO₃⁻; reaksinya adalah sebagai berikut:

\[
\text{CO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \rightarrow 2\text{H}^+ + \text{CO}_3^{-}
\]
a) Sumber Karbondioksida.
 Karbondioksida yang terdapat di dalam air dapat diperoleh dari:
 - Difusi dari atmosfer secara langsung
 - Air tanah yang melewati tanah organik
 - Air hujan, air hujan yang jatuh ke permukaan bumi secara teoritis memiliki kandungan karbondioksida sebesar 0,55 – 0,6 mg/l
 - Hasil penguraian bahan organik di dasar perairan
 - Dari hasil proses pernafasan (respirasi) hewan dan tumbuhan air,
 - Hasil proses pemecahan/ penguraian senyawa-senyawa kimia.

b) Penurunan Karbondioksida dalam air.
 Sebagaimana dengan faktorkimia lainnya, kelarutan karbondioksida ini dipengaruhi oleh faktor suhu, pH dan senyawa karbondioksida. Kelarutan karbondioksida dalam air dapat dilihat pada Tabel 5.

 Tabel 6. Pengaruh suhu terhadap kelarutan karbondioksida diperaian alami

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>CO₂ (mg/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,10</td>
</tr>
<tr>
<td>5</td>
<td>0,91</td>
</tr>
<tr>
<td>10</td>
<td>0,76</td>
</tr>
<tr>
<td>15</td>
<td>0,65</td>
</tr>
<tr>
<td>20</td>
<td>0,56</td>
</tr>
<tr>
<td>25</td>
<td>0,48</td>
</tr>
<tr>
<td>30</td>
<td>0,42</td>
</tr>
</tbody>
</table>

 Sumber : Boyd, 1988

 Pengaruh karbondioksida terhadap kehidupan organisme air dapat secara langsung (proses respirasi) maupun tidak langsung (proses fotosintesis). Secara umum pengaruh karbondioksida terhadap organisme air adalah sebagai berikut:
a) Pada kisaran 15 ppm akan mempengaruhi kehidupan ikan (organisme akuatik) karena merupakan racun bagi organisme tersebut.

b) Dibutuhkan oleh tanaman berhijau daun (berklorofil) untuk proses fotosintesis.

c) Dapat mempertahankan kestabilan pH dalam air, terutama dalam bentuk senyawa karbonat/bikarbonat. Hal tersebut, berarti dapat mempertahankan kondisi lingkungan perairan yang stabil untuk mendukung kehidupan organisme.

3) **Biochemical Oxygen Demand (BOD)**

BOD atau *Biochemical Oxygen Demand* adalah suatu karakteristik yang menunjukkan jumlah oksigen terlarut yang diperlukan oleh mikroorganisme (biasanya bakteri) untuk mengurai atau mendekomposisi bahan organik dalam kondisi aerobik (Umaly dan Cuvin, 1988). Ditegaskan lagi oleh Boyd (1990), bahwa bahan organik yang terdekomposisi dalam BOD adalah bahan organik yang siap terdekomposisi (*readily decomposable organic matter*). Mays (1996) mengartikan BOD sebagai suatu ukuran jumlah oksigen yang digunakan oleh populasi mikroba yang terkandung dalam perairan sebagai respons terhadap masuknya bahan organik yang dapat diurai. Dari pengertian-pengertian ini dapat dikatakan bahwa walaupun nilai BOD menyatakan jumlah oksigen, tetapi untuk mudahnya dapat juga diartikan sebagai gambaran jumlah bahan organik mudah urai (*biodegradable organics*) yang ada di perairan.

Pemeriksaan BOD diperlukan untuk menentukan beban pencemaran akibat air buangan dan untuk mendesain sistem pengolahan secara biologis (G. Alerts dan SS Santika, 1987). Adanya bahan organik yang cukup tinggi (ditunjukkan dengan nilai BOD dan COD) menyebabkan
mikroba menjadi aktif dan menguraikan bahan organik tersebut secara biologis menjadi senyawa asam-asam organik.

Penguraian ini terjadi disepanjang saluran secara aerob dan anaerob. Timbul gas CH$_4$, NH$_3$ dan H$_2$S yang berbau busuk. Uji BOD ini tidak dapat digunakan untuk mengukur jumlah bahan-bahan organik yang sebenarnya terdapat di dalam air, tetapi hanya mengukur secara relatif jumlah konsumsi oksigen yang digunakan untuk mengoksidasi bahan organik tersebut. Semakin banyak oksigen yang dikonsumsi, maka semakin banyak pula kandungan bahan-bahan organik di dalamnya.

Pemeriksaan BOD diperlukan untuk menentukan beban pencemaran akibat air buangan penduduk atau industri, dan untuk mendisain sistem-sistem pengolahan biologis bagi air yang tercermar tersebut. Penguraian zat organik adalah peristiwa alamiah; kalau sesuatu badan air dicemari oleh zat organik, bakteri dapat menghabiskan oksigen terlarut, dalam air selama proses oksidasi tersebut yang bisa mengakibatkan kematian ikan-ikan dalam air dan keadaan menjadi anaerobik dan dapat menimbulkan bau busuk pada air. Pemeriksaan BOD didasarkan atas reaksi oksidasi zat organik dengan oksigen di dalam air, dan proses tersebut berlangsung karena adanya bakteri aerob.

Atas dasar reaksi tersebut, yang memerlukan kira-kira 2 hari dimana 50% reaksi telah tercapai, 5 hari supaya 75% dan 20 hari supaya 100% tercapai maka pemeriksaan BOD dapat dipergunakan untuk menaksir beban pencemaran zat organik. Chemical Oxygen Demand (COD) atau Kebutuhan Oksigen Kimia (KOK) adalah jumlah oksigen (mg O$_2$) yang dibutuhkan untuk mengoksidasi zat – zat organis yang ada dalam 1 L sampel air. Angka COD merupakan ukuran bagi pencemaran air oleh zat – zat organik yang secara alamiah dapat dioksidasikan melalui proses
mokrobiologis, dan mengakibatkan berkurangnya oksigen terlarut di dalam air.

Senyawa-senyawa organik pada umumnya tidak stabil dan mudah dioksidasi secara biologis atau kimia menjadi senyawa stabil, antara lain menjadi CO₂ dan H₂O. Proses inilah yang menyebabkan konsentrasi oksigen terlarut dalam perairan menurun dan hal ini menyebabkan permasalahan bagi kehidupan akuatik.

4) Chemical Oxygen Demand (COD)

COD atau Chemical Oxygen Demand adalah jumlah oksigen yang diperlukan untuk mengurai seluruh bahan organik yang terkandung dalam air (Boyd, 1990).
Chemical oxygen Demand (COD) atau kebutuhan oksigen kimia (KOK) merupakan jumlah oksigen yang dibutuhkan untuk mengoksidasi zat-zat organik yang ada dalam sampel air atau banyaknya oksigen yang dibutuhkan untuk mengoksidasi zat-zat organik menjadi CO₂ dan H₂O. Pada reaksi ini hampir semua zat yaitu sekitar 85% dapat teroksidasi menjadi CO₂ dan H₂O dalam suasana asam, sedangkan penguraian secara biologi (BOD) tidak semua zat organik dapat diuraikan oleh bakteri. Angka COD merupakan ukuran bagi pencemaran air oleh zat-zat organik yang secara alamiah dapat dioksidasikan melalui proses mikrobiologis, dan mengakibatkan berkurangnya oksigen terlarut di dalam air.

COD adalah banyaknya oksigen yang dibutuhkan untuk mengoksidasi senyawa organik dalam air, sehingga parameter COD mencerminkan banyaknya senyawa organik yang dioksidasi secara kimia. Tes COD digunakan untuk menghitung kadar bahan organik yang dapat dioksidasi dengan cara menggunakan bahan kimia oksidator kuat dalam media asam.

Beberapa bahan organik tertentu yang terdapat pada air limbah, kebal terhadap degradasi biologis dan ada beberapa diantaranya yang beracun meskipun pada konsentrasi yang rendah. Bahan yang tidak dapat didegradasi secara biologis tersebut akan didegradasi secara kimiawi melalui proses oksidasi, jumlah oksigen yang dibutuhkan untuk mengoksidasi tersebut dikenal dengan Chemical Oxygen Demand. Kadar COD dalam air limbah berkurang seiring dengan berkurangnya konsentrasi bahan organik yang terdapat dalam air limbah, konsentrasi bahan organik yang rendah tidak selalu dapat direduksi dengan metode pengolahan yang konvensional.
Angka COD merupakan ukuran bagi pencemaran air oleh zat organik yang secara alamiah dapat dioksidisasi dan mengakibatkan berkurangnya oksigen terlarut dalam air. Maka konsentrasri COD dalam air harus memenuhi standar baku mutu yang telah ditetapkan agar tidak mencemari lingkungan.

Air yang telah tercemar limbah organik sebelum reaksi berwarna kuning dan setelah reaksi oksidasi berubah menjadi warna hijau. Jumlah oksigen yang diperlukan untuk reaksi oksidasi terhadap limbah organik seimbang dengan jumlah kalium dikromat yang digunakan pada reaksi oksidasi.

5) **Total Organic Mater (TOM)**

Bahan organik merupakan salah satu bentuk partikel (komponen) yang terdapat di dalam air. Air di perairan umum seperti sungai dan danau yang diduga hanya mengandung unsur organik, ternyata mengandung bahan organik dari jasad-jasad dan detritus.

Bahan organik ini mengalami proses perombakan oleh bakteri nitrifikasi dan menghasilkan beberapa komponen (unsur) seperti:

a) **Nitrogen terlarut (nitrogen organik)**

b) **Karbon organik terlarut.**

Unsur karbon adalah bagian dari suatu senyawa seperti karbohidrat, protein dan lemak. Unsur karbon ini diperoleh dari hasil proses oksidasi senyawa karbohidrat dan protein. Senyawa karbohidrat, protein dan lemak banyak terkandung dalam organisme
(hewan dan tumbuhan). Total karbon organik di dalam air ditentukan oleh organismedalamair dan karbon terlarut yang terkandung dalam larutan sejati/ larutan koloid.

Tabel 7. Jumlah nitrogen organik dalam air.

<table>
<thead>
<tr>
<th>Jenis Asam Amino</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryptophane</td>
<td>10,1</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>10,4</td>
</tr>
<tr>
<td>Hystidine</td>
<td>5,7</td>
</tr>
<tr>
<td>Cystine</td>
<td>1,5</td>
</tr>
<tr>
<td>Jumlah nitrogen organik</td>
<td>27,7</td>
</tr>
</tbody>
</table>

Bahan organik dalam air pada suatu perairan berasal dari beberapa sumber yaitu:

- Dari sisa-sisa organisme yang telah mati
- Dari hasil eksresi organisme
- Dari hasil ikutan aliran air yang masuk dalam areal perairan tertentu.

Bahan organik dalam suatu perairan mempunyai pengaruh secara langsung dan tidak langsung terhadap kehidupan organisme (biota) perairan. Pengaruh bahan organik inisecaraumum digunakan oleh:

- Jasad renik untuk pertumbuhan dan perkembangannya seperti bakteri, alga tertentu dan protozoa tertentu.
- Secara tidak langsung dengan konsentrasi relatif tinggi dapat mengurangi kadar oksigen dan meningkatkan gas-gas yang beracun bagi organisme air seperti H₂S dan metana.
6) Kesadahan

Kesadahan air adalah kandungan mineral-mineral tertentu di dalam air, umumnya ion kalsium (Ca) dan magnesium (Mg) dalam bentuk garam karbonat. Air sadah atau air keras adalah air yang memiliki kadar mineral yang tinggi, sedangkan air lunak adalah air dengan kadar mineral yang rendah. Selain ion kalsium dan magnesium, penyebab kesadahan juga bisa merupakan ion logam lain maupun garam-garam bikarbonat dan sulfat. Metode paling sederhana untuk menentukan kesadahan air adalah dengan sabun. Dalam air lunak, sabun akan menghasilkan busa yang banyak. Pada air sadah, sabun tidak akan menghasilkan busa atau menghasilkan sedikit sekali busa. Kesadahan air total dinyatakan dalam satuan ppm berat per volume (w/v) dari CaCO₃.

Kesadahan merupakan parameter kimia dalam air yang ditunjukkan dengan konsentrasi kation bervalensi dua terutama Ca²⁺ dan Mg²⁺. Total kesadahan dinyatakan dalam ppm ekuivalen CaCO₃. Total kesadahan erat kaitannya dengan alkalinitas sebab anion dari alkalinitas dan kation dari kesadahan diperoleh dari senyawa yang sama seperti senyawa karbonat atau seperti pada reaksi berikut:

\[
\text{CaCO}_3 + \text{CO}_2 + \text{H}_2 \rightarrow \text{Ca}^{2+} + 2\text{HCO}_3^{-}
\]

Oleh sebab itu kesadahan dan alkalinitas dapat menggambarkan tingkat kesuburran air dan daya sangga suatu perairan. Klasifikasi perairan berdasarkan nilai kesadahan adalah sebagai berikut:
Tabel 8. Klasifikasi perairan berdasarkan nilai kesadahan

<table>
<thead>
<tr>
<th>Kesadahan (mg/liter CaCO$_3$)</th>
<th>Klasifikasi Perairan</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>Lunak (soft)</td>
</tr>
<tr>
<td>50 - 150</td>
<td>Menengah (moderately hard)</td>
</tr>
<tr>
<td>150 - 300</td>
<td>Sadah (hard)</td>
</tr>
<tr>
<td>>300</td>
<td>Sangat sadah (very hard)</td>
</tr>
</tbody>
</table>

Secara lebih rinci kesadahan dibagi dalam dua tipe, yaitu: (1) kesadahan umum ("general hardness" atau GH) dan (2) kesadahan karbonat ("carbonate hardness" atau KH). Disamping dua tipe kesadahan tersebut, dikenal pula tipe kesadahan yang lain yaitu yang disebut sebagai kesadahan total atau total hardness. Kesadahan total merupakan penjumlahan dari GH dan KH. Kesadahan umum atau "General Hardness" merupakan ukuran yang menunjukkan jumlah ion kalsium (Ca$^{++}$) dan ion magnesium (Mg$^{++}$) dalam air. Ion-ion lain sebenarnya ikut pula mempengaruhi nilai GH, akan tetapi pengaruhnya diketahui sangat kecil dan relatif sulit diukur sehingga diabaikan. GH pada umumnya dinyatakan dalam satuan ppm (part per million/ satu persejuta bagian) kalsium karbonat (CaCO$_3$), tingkat kekerasan (dH), atau dengan menggunakan konsentrasi molar CaCO$_3$. Satu satuan kesadahan Jerman atau dH sama dengan 10 mg CaO (kalsium oksida) per liter air. Kesadahan pada umumnya menggunakan satuan ppm CaCO$_3$, dengan demikian satu satuan Jerman (dH) dapat diekspresikan sebagai 17.8 ppm CaCO$_3$. Sedangkan satuan konsentrasi molar dari 1 mili ekuivalen = 2.8 dH = 50 ppm.
Tabel 9. Konversi tingkat kesadahan dengan kadar CaCO₃ dan tingkat kekerasan perairan.

<table>
<thead>
<tr>
<th>Tingkat kesadahan (dH)</th>
<th>Kadar CaCO₃ (ppm CaCO₃)</th>
<th>Tingkat kekerasan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>0 - 70</td>
<td>Sangat rendah (sangat lunak)</td>
</tr>
<tr>
<td>4 - 8</td>
<td>70 - 140</td>
<td>Rendah (lunak)</td>
</tr>
<tr>
<td>8 - 12</td>
<td>140 - 210</td>
<td>Sedang</td>
</tr>
<tr>
<td>12 - 18</td>
<td>210 - 320</td>
<td>Agak tinggi (agak keras)</td>
</tr>
<tr>
<td>18 - 30</td>
<td>320 - 530</td>
<td>Tinggi (keras)</td>
</tr>
</tbody>
</table>

Dalam kaitannya dengan proses biologi, GH lebih penting peranananya dibandingkan dengan KH ataupun kesadahan total. Apabila ikan atau tanaman dikatakan memerlukan air dengan kesadahan tinggi (keras) atau rendah (lunak), hal ini pada dasarnya mengacu kepada GH. Ketidaksesuaian GH akan mempengaruhi transfer hara/gizi dan hasil sekresi melalui membran dan dapat mempengaruhi kesuburan, fungsi organ dalam (seperti ginjal), dan pertumbuhan. Setiap jenis ikan memerlukan kisaran kesadahan (GH) tertentu untuk hidupnya. Pada umumnya, hampir semua jenis ikan dan tanaman dapat beradaptasi dengan kondisi GH lokal, meskipun demikian, tidak demikian halnya dengan proses pemijahan. Pemijahan bisa gagal apabila dilakukan pada nilai GH yang tidak tepat.

Dari uraian tersebut di atas menunjukkan bahwa alkalinitas dan kesadahan mempunyai pengaruh terhadap kehidupan organisme air. Pengaruh kesadahan dan alkalinitas air ini yaitu:

a) Dapat mempertahankan (menstabilkan) fluktuasi pH air.

b) Berdasarkan butir a berarti secara tidak langsung dapat mempertahankan “ketersediaan” unsur hara dalam air yang sangat dibutuhkan oleh organisme nabati.
7) Alkalinitas

Alkalinitas merupakan penyangga (buffer) perubahan pH air dan indikasi kesuburan yang diukur dengan kandungan karbonat. Alkalinitas adalah kapasitas air untuk menetralkan tambahan asam tanpa penurunan nilai pH larutan.

Alkalinitas mampu menetralisir keasaman di dalam air, Secara khusus alkalinitas sering disebut sebagai besaran yang menunjukkan kapasitas pembufferan dari ion bikarbonat, dan tahap tertentu ion karbonat dan hidroksida dalam air. Ketiga ion tersebut dalam air akan bereaksi dengan ion hydrogen sehingga menurunkan kemasaman dan menaikkan pH.

Alkalinitas optimal pada nilai 90-150 ppm. Alkalinitas rendah diatasi dengan pengapuran dosis 5 ppm. Dan jenis kapur yang digunakan disesuaikan kondisi pH air sehingga pengapuran tidak membuat pH air tinggi, serta disesuaikan dengan keperluan dan fungsinya.

Perbedaan antara basa tingkat tinggi dengan alkalinitas yang tinggi adalah sebagai berikut:

- Tingkat basa tinggi ditunjukkan oleh pH tinggi;
- Alkalinitas tinggi ditunjukkan dengan kemampuan menerima proton tinggi.

Alkalinitas berperan dalam menentukan kemampuan air untuk mendukung pertumbuhan alga dan kehidupan air lainnya, hal ini dikarenakan pengaruh sistem buffer dari alkalinitas. Alkalinitas berfungsi sebagai reservoir untuk karbon organik. Sehingga alkalinitas diukur sebagai faktor kesuburan air.
Perairan mengandung alkalinitas ≥20 ppm menunjukkan bahwa perairan tersebut relatif stabil terhadap perubahan asam/basa sehingga kapasitas buffer atau basa lebih stabil. Selain bergantung pada pH, alkalinitas juga dipengaruhi oleh komposisi mineral, suhu, dan kekuatan ion. Nilai alkalinitas alami tidak pernah melebihi 500 mg/liter CaCO3. Perairan dengan nilai alkalinitas yang terlalu tinggi tidak terlalu disukai oleh organisme akuatik karena biasanya diikuti dengan nilai kesadahan yang tinggi atau kadar garam natrium yang tinggi. Air dengan kandungan kalsium karbonat lebih dari 100 ppm disebut sebagai alkalin, sedangkan air dengan kandungan kurang dari 100 ppm disebut sebagai lunak atau tingkat alkalinitas sedang.

Penyusun alkalinitas yang utama di perairan adalah anion bikarbonat (HCO₃⁻), karbonat (CO₃²⁻) dan hidroksida (OH⁻). Kation utama yang mendominasi perairan tawar adalah kalsium dan magnesium, sedangkan pada perairan laut adalah sodium dan magnesium. Anion utama pada perairan tawar adalah bikarbonat dan karbonat, sedangkan pada perairan laut adalah klorida. Persentase ion-ion utama yang terdapat pada perairan tawar dan laut ditunjukkan pada Tabel 9.

<table>
<thead>
<tr>
<th>Ion-ion utama</th>
<th>Persentase (%)</th>
<th>Air Tawar</th>
<th>Air Laut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalsium (Ca²⁺)</td>
<td>60,9</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>Magnesium (Mg²⁺)</td>
<td>19,0</td>
<td>10,1</td>
<td></td>
</tr>
<tr>
<td>Sodium/Kalsium (Na⁺)</td>
<td>16,6</td>
<td>83,7</td>
<td></td>
</tr>
<tr>
<td>Kalium (K⁺)</td>
<td>3,5</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>Anion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bikarbonat (HCO₃⁻) dan Karbonat (CO₃²⁻)</td>
<td>72,4</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Sulfat (SO₄²⁻)</td>
<td>16,1</td>
<td>12,2</td>
<td></td>
</tr>
<tr>
<td>Klorida (Cl⁻)</td>
<td>11,5</td>
<td>87,2</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Cole, 1983 dalam Effendie, 2004
Alkalinitas juga berhubungan dengan pH dan karbondioksida bebas dalam perairan, semakin tinggi pH perairan maka semakin tinggi pula alkalinitas dan karbondioksida yang terkandung dalam perairan tersebut. Alkalinitas perairan berperan dalam hal-hal berikut:

a) **Sistem penyangga (buffer)**
 Bikarbonat yang terdapat pada perairan dengan nilai alkalinitas total tinggi berperan sebagai penyangga (buffer capacity) perairan terhadap perubahan pH yang drastis.

b) **Koagulasi kimia**
 Bahan kimia yang digunakan dalam proses koagulasi air atau air limbah bereaksi dengan air membentuk presipitasi hidroksida yang tidak larut.

c) **Pelunakan air (water softening)**
 Alkalinitas perlu dipertimbangkan dalam menentukan jumlah soda abu dan kapur yang bertujuan untuk menurunkan kesadahan.

8) **Fosfat**

 Fosfat dapat ditemukan di bumi di dalam air, tanah dan sedimen. Tidak seperti senyawa materi lain siklus fosfor tidak dapat ditemukan di udara yang mempunyai tekanan tinggi. Hal ini karena fosfor biasanya cair pada suhu dan tekanan normal. Hal ini terutama melakukan siklus kembali melalui air, tanah dan sedimen.

 Fosfat yang paling sering ditemukan dalam formasi batuan sedimen dan laut sebagai garam fosfat. Garam fosfat yang dilepaskan dari pelapukan batuan melalui tanah biasanya larut dalam air dan akan diserap oleh tanaman. Karena jumlah fosfor dalam tanah pada umumnya kecil, sering kali faktor pembatas bagi pertumbuhan tanaman. Itu sebabnya manusia

Fosfor atau dalam ilmu kimia disimbolkan dengan huruf (P) ialah unsur hara (nutrisi) yang diperlukan oleh flora (tumbuhan air) untuk pertumbuhan dan perkembangan hidupnya. Unsur tersebut ada dalam bentuk (PO$_4$). Fosfat adalah unsur dalam suatu batuan beku (apatit) atau sedimen dengan kandungan fosfor ekonomis. Kadang kadang, endapan fosfat berasosiasi dengan batuan beku alkali kompleks, terutama karbonit kompleks dan sienit. Fosfor berperan dalam transfer energi di dalam sel, misalnya yang terdapat pada ATP (*Adenosine Triphosphate*) dan ADP (*Adenosine Diphosphate*).

Fosfat dalam air laut berbentuk ion fosfat. Ion fosfat dibutuhkan pada proses fotosintesis dan proses lainnya dalam tumbuhan (bentuk ATP, ADP dan Nukleotid koenzim). Penyerapan dari fosfat dapat berlangsung terus walaupun dalam keadaan gelap. Ortofosfat (H$_3$PO$_4$) adalah bentuk fosfat anorganik yang paling banyak terdapat dalam siklus fosfat. Distribusi bentuk yang beragam dari fosfat di air laut dipengaruhi oleh proses biologi dan fisik.

Dipermukaan air, fosfat di angkut oleh fitoplankton sejak proses fotosintesis. Konsentrasi fosfat di atas 0,3 µm akan menyebabkan kecepatan pertumbuhan pada banyak spesies fitoplankton. Untuk konsentrasi dibawah 0,3 µm ada bagian sel yang cocok menghalangi dan
sel fosfat kurang diproduksi. Mungkin hal ini tidak akan terjadi di laut sejak NO₃ selalu habis sebelum PO₄ jatuh ke tingkat yang kritis. Pada musim panas, permukaan air mendekati 50% seperti organik-P.

Dalam perairan laut yang normal, rasio N/P adalah sebesar 15:1. Ratio N/P yang meningkat potensial menimbulkan blooming atau eutrofikasi perairan, dimana terjadi pertumbuhan fitoplankton yang tidak terkendali. Eutrofikasi potensial berdampak negatif terhadap lingkungan, karena berkurangnya oksigen terlarut yang mengakibatkan kematian organisme akuatik lainnya (asphyxiation), selain keracunan karena zat toksin yang diproduksi oleh fitoplankton (genus Dinoflagelata). Fitoplankton mengakumulasi N, P, dan C dalam tubuhnya, masing – masing dengan nilai CF (concentration factor) 3 x 10⁴ untuk P, 16(3 x 10⁴) untuk N dan 4 x 10³ untuk C.

Diperairan, bentuk unsur fosfor berubah secara terus menerus akibat proses dekomposisi dan sintesis antara bentuk organik, dan bentuk anorganik yang dilakukan oleh mikroba. Semua polifosfat mengalami hidrolisis membentuk ortofosfat. Perubahan ini bergantung pada suhu yang mendekati titik didih, perubahan polifosfat menjadi ortofosfat berlangsung cepat. Kecepatan ini meningkat dengan menurunnya nilai pH. Perubahan polifosfat menjadi ortofosfat pada air limbah yang mengandung banyak bakteri lebih cepat dibandingkan dengan perubahan yang terjadi pada air bersih.

Keberadaan fosfat di dalam air akan terurai menjadi senyawa ionisasi, antara lain dalam bentuk ion H₂PO₄⁻, HPO₄²⁻, PO₄³⁻. Senyawa fosfat dalam perairan berasal dari sumber alami seperti erosi tanah, buangan dari hewan dan pelapukan tumbuhan, dan dari laut sendiri. Fosfat diabsorpsi oleh fitoplankton dan seterusnya masuk kedalam rantai makanan. Senyawa fosfat dalam perairan berasal dari sumber alami
seperti erosi tanah, buangan dari hewan dan pelapukan tumbuhan, dan dari laut itu sendiri. Peningkatan kadar fosfat dalam air laut, akan menyebabkan terjadinya ledakan populasi (blooming) fitoplankton yang akhirnya dapat menyebabkan kematian ikan secara massal. Batas optimum fosfat untuk pertumbuhan plankton adalah 0,27 – 5,51 mg/liter

Ortofosfat yang merupakan produk ionisasi dari asam ortofosfat adalah bentuk fosfor yang paling sederhana di perairan. Ortofosfat merupakan bentuk fosfor yang dapat dimanfaatkan secara langsung oleh tumbuhan akuatik, sedangkan polifosfat harus mengalami hidrolisis membentuk ortofosfat terlebih dahulu sebelum dapat dimanfaatkan sebagai sumber fosfat.

Berdasarkan kadar fosfat total, perairan diklasifikasikan menjadi tiga yaitu:

a) perairan dengan tingkat kesuburan rendah yang memiliki kadar fosfat total berkisar antara 0 – 0,02 mg/liter
b) perairan dengan tingkat kesuburan sedang memiliki kadar fosfat 0.021 – 0,05 mg/liter
c) perairan dengan tingkat kesuburan tinggi, memiliki kadar fosfat total 0.051 – 0,1 mg/liter.

9) Amoniak (Total Amonia Nitrogen)

Amonia di perairan berasal dari sisa metabolisme (eksresi) hewan dan proses dekomposisi bahan organik oleh mikroorganisme. Pada kegiatan budidaya, keberadaan amonia dihasilkan dari aktivitas ekskresi biota sendiri dan proses dekomposisi bahan organik dari sisa pakan dan kotoran selama pemeliharaan. Menurut Effendi (2003), sumber amonia lainnya di perairan adalah gas nitrogen dari proses
difusi udara yang tereduksi di dalam air. Amonia di perairan dapat
dijumpai dalam bentuk amonia total yang terdiridari amonia bebas
(NH$_3$) dan ion amonium (NH$_4^+$). Kesetimbangan antara keduabentuk
amonia di atas bergantung pada kondisi pH dan suhu perairan (Midlen
dan Redding, 2000). Berikut ini adalah bentuk kesetimbangan gas
amonia dan ionamonium di perairan:

\[\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^- \]

Amonia di perairan akan ditemukan lebih banyak dalam bentuk
ionamonium jika pH perairan kurang dari 7, sedangkan pada perairan
dengan pH lebih dari 7, amonia bebas atau amonia tak terionisasi yang
bersifat toksik terdapat dalam jumlah yang lebih banyak (Novotny dan
Olem, 1994). Tingkat toksisitas amonia tak-terionisasi tergantung pada
kondisi pH dan suhu di suatu perairan, sehingga kenaikan nilai pH dan
suhu menyebabkan proporsi amonia bebas di perairan meningkat.

Toksisitas amonia tak-terionisasi berbahaya bagi organisme
akuatik, khususnya bagi ikan (Effendi, 2003). Karena konsentrasi NH$_3$
bebas yang tinggi di perairan dapat menyebabkan kerusakan insang
pada ikan. Selain itu tingginya konsentrasi NH$_3$ bebas dapat
menyebabkan meningkatnya kadar amonia dalam darah dan jaringan
tubuh ikan, sehingga dapat mengurangi kemampuan darah untuk
mengangkut oksigen serta mengganggu kestabilan membran sel
(Boyd, 1989). Menurut McNeely et al. (1979) dalam Effendi (2003),
kadar amonia padaperairan alami tidak lebih dari 0.1 mg/liter.
Kemudian jika konsentrasi ammonia tak-terionisasi lebih dari 0.2
mg/liter akan bersifat toksik bagi beberapa jenis ikan (Sawyer dan
Gambar 17. Penguraian nitrogen dalam perairan

10) Nitrat

Nitrat merupakan salah satu bentuk nitrogen di perairan yang dapat dimanfaatkan oleh tumbuhan (fitoplankton dan alga) selain ion amonium dalam menunjang proses pertumbuhan. Senyawa NO_3^- sangat mudah larut dalam air dan bersifat stabil. Nitrat nitrogen di
perairan merupakan hasil dari proses oksidasi nitrogen secara sempurna melalui proses nitrifikasi yang melibatkan bakteri, diantaranya; bakteri *Nitrosomonas* yang mengoksidi amonia menjadi nitrit, dan bakteri *Nitrobacter* yang mengoksidi nitrit menjadi nitrat. Berikut ini adalah proses oksidasi nitrogen menjadi nitrat:

Nitrosomonas

\[2\text{NH}_3 + 3\text{O}_2 \rightarrow 2\text{NO}_2^- + 2\text{H}^+ + 2\text{H}_2\text{O}\]

Nitrobacter

\[2\text{NO}_2^- + \text{O}_2 \rightarrow 2\text{NO}_3^-\]

Proses nitrifikasi sangat ditentukan oleh kondisi pH, suhu, kandungan oksigen larut, kandungan bahan organik, dan aktivitas bakteri lain di perairan (Krenkeldan Novotny, 1980 in Novotny dan Olem, 1994).

Pada perairan yang tidak tercemar biasanya kadar nitrat lebih tinggi darikadar amonium. Kadar NO$_3$-N pada perairan alami biasanya tidak pernah melebihi nilai 0.1 mg/liter. Kadar NO$_3$-N di perairan mencapai nilai 0.2 mg/liter dapat menyebabkan eutrofikasi yang berakibat pada tumbuh pesatnya fitoplankton dan alga. Terjadinya pencemaran antropogenik dapat digambarkan apabila kadar nitrat di perairan lebih dari 5 mg/liter (Davis dan Cornwell, 1991 dalam Effendi, 2003). Kadar nitrat di perairan dapat dibagi menjadi tiga kelompok berdasarkan kantingkat penyuburannya; kadar nitrat antara 0 mg/liter hingga 1 mg/liter untuk perairan oligotrofik; kadar nitrat antara 1 mg/liter hingga 5 mg/liter untuk perairan mesotrofik; dan kadar nitrat 5 mg/liter hingga 50 mg/liter untuk perairan eutrofik.
11) Nitrit

Nitrit (NO$_2$) merupakan bentuk peralihan antara ammonia dan nitrat (nitrifikasi) dan antara nitrat dengan gas nitrogen (denitrifikasi) oleh karena itu, nitrit bersifat tidak stabil dengan keberadaan oksigen. Kandungan nitrit pada perairan alami mengandung nitrit sekitar 0.001 mg/L. kadar nitrit yang lebih dari 0.06 mg/L adalah bersifat toksik bagi organisme perairan. Keberadaan nitrit menggambarkan berlangsungnya proses biologis perombakan bahan organik yang memiliki kadar oksigen terlarut yang rendah.

Nitrit juga bersifat racun karena dapat bereaksi dengan hemoglobin dalam darah, sehingga darah tidak dapat mengangkut oksigen, disamping itu juga nitrit membentuk nitrosamin (RRN-NO) pada air buangan tertentu dan dapat menimbulkan kanker. Nitrat (NO$_3^-$) dan nitrit (NO$_2^-$) adalah ion-ion anorganik alami, yang merupakan bagian dari siklus nitrogen. Aktifitas mikroba di tanah atau air menguraikan sampah yang mengandung nitrogen organik pertama-pertama menjadi ammonia, kemudian dioksidasikan menjadi nitrit dan nitrat. Oleh karena nitrit dapat dengan mudah dioksidasikan menjadi nitrat, maka nitrat adalah senyawa yang paling sering ditemukan di dalam air bawah tanah maupun air yang terdapat di permukaan. Pencemaran oleh pupuk nitrogen, termasuk ammonia anhidrat seperti juga sampah organik hewan maupun manusia, dapat meningkatkan kadar nitrat di dalam air.

Senyawa yang mengandung nitrat di dalam tanah biasanya larut dan dengan mudah bermigrasi dengan air bawah tanah.

Kandungan nitrit yang meningkat dikarenakan terjadinya proses nitrifikasi, yaitu proses pengubahan amonia menjadi nitrat dengan nitrit sebagai senyawa perantaranya. Dalam suatu badan perairan, jika didalamnya cukup banyak mengandung kation – kation, asam nitrit yang terbentuk akan segera berubah menjadi garam – garam nitrit.
kemudian diubah lebih lanjut menjadi garam- garam nitrit dengan reaksi sebagai berikut:

$$2\text{NaNO}_2 + \text{O}_2 \rightarrow 2\text{NaNO}_3$$

Walaupun tidak setoksik amonium, level nitrit yang tinggi dapat menyebabkan kematian. Hal ini disebabkan karena nitrit dalam level tinggi mampu secara aktif melewati insang melalui transport aktif dan menuju aliran darah yang bisa mengoksidasi hemoglobin normal menjadi methemoglobin. Hemoglobin normal mengambil oksigen pada insang dan mentransportasikannya dalam jaringan tubuh yang kemudian diubah menjadi karbondioksida, sedangkan methemoglobin tidak mampu mentransportasikan oksigen, sehingga mengakibatkan stress pada ikan karena sulit bernafas.

c. Parameter Biologi

Kegiatan Pembelajaran (5M)

Pernahkan anda mengamati organisme hidup yang ada di perairan umum seperti sungai atau pantai? Berkunjunglah ke sungai atau pantai bersama kelompok anda, amati seluruh organisme yang ada di perairan tersebut, bila memungkinkan ambil beberapa sampel biota, lalu lakukan identifikasi organisme yang anda peroleh, kumpulkan informasi tentang organisme hidup yang ada diperairan tersebut lalu presentasikan di kelas anda tentang hasil yang anda peroleh!
Parameter biologi masih jarang digunakan sebagai parameter penentu pencemaran. Padahal, pengukuran menggunakan parameter fisika dan kimia hanya memberikan kualitas lingkungan sesaat dan cenderung memberikan hasil dengan interpretasi dalam kisaran lebar.

Dewasa ini beberapa negara maju seperti Perancis, Inggris dan Belgia melirik indikator biologis untuk memantau pencemaran air. Bahkan sudah dikembangkan hukum mutu air biotik. Di Indonesia belum mempunyai baku mutu air indeks biotik, yang ada hanya baku mutu air untuk parameter fisika dan kimia.

Indikator Biologis digunakan untuk menilai secara makro perubahan keseimbangan ekologi, khususnya ekosistem, akibat pengaruh limbah. Spesies yang tahan hidup pada suatu lingkungan terpopulasi, akan menderita stress fisiologis yang dapat digunakan sebagai indikator biologis.

Dibandingkan dengan menggunakan parameter fisika dan kimia, indikator biologis dapat memantau secara kontinyu. Hal ini karena komunitas biota perairan (flora/fauna) menghabiskan seluruh hidupnya di lingkungan tersebut, sehingga bila terjadi pencemaran akan bersifat akumulasi atau penimbunan.

Di samping itu, indikator biologis merupakan petunjuk yang mudah untuk memantau terjadinya pencemaran. Adanya pencemaran lingkungan, maka keanekaragaman spesies akan menurun dan mata rantai makanannya menjadi lebih sederhana, kecuali bila terjadi penyuburan.

Flora dan fauna yang dapat dijadikan indikator biologis pencemaran sungai dapat diamati dari keanekaragaman spesies, laju pertumbuhan struktur dan seks ratio. Keanekaragaman flora dan fauna ekosistem sungai tinggi menandakan kualitas air sungai tersebut baik/belum tercemar. Tetapi sebaliknya bila keanekaragamannya kecil, sungai tersebut tercemar.
Indikator biologis pencemaran sungai harus memenuhi kriteria sebagai berikut:

1) Mudah diidentifikasi
2) Mudah dijadikan sampel, artinya tidak perlu bantuan operator khusus, maupun peralatan yang mahal dan dapat dilakukan secara kuantitatif.
3) Mempunyai distribusi yang kosmopolit.
4) Kelimpahan suatu spesies dapat digunakan untuk menganalisa indeks keanekaragaman.
5) Mempunyai arti ekonomi sebagai sumber penghasilan (seperti ikan), atau hama/organisme pengganggu (contoh: algae)
6) Mudah menghimpun/menimbun bahan pencemar.
7) Mudah dibudidayakan di laboratorium.
8) Mempunyai keragaman jenis yang sedikit.

Yang perlu diperhatikan dalam memilih indikator biologi adalah tiap spesies mempunyai respon terhadap pencemaran yang spesifik. Ikan sulit digunakan sebagai indikator populasi. Lebih mudah menggunakan spesies air lain yang tidak lincah geraknya.

Parameter biologis yang biasa diukur dalam pengamatan kualitas air untuk budidaya perairan adalah plankton, nekton, neuston, perifiton dan bentos karena masing-masing memiliki karakteristik yang khas.

1) Plankton

Plankton berasal dari bahasa Yunani ‘planktos’ yang berarti mengembara atau berkeliiaran. Kemudian plankton didefinisikan sebagai kumpulan organisme (umumnya berukuran mikro), yang diwakili oleh hampir semua kelompok dunia tumbuhan maupun hewan, baik sebagai produser primer, herbivore, karnivor, maupun sebagai transformer (seperti jamur dan bakteri). Cara hidup organisme ini

Tabel 11. Plankton berdasarkan perbedaan ukuran

<table>
<thead>
<tr>
<th>Klasifikasi</th>
<th>Margalef (plankton air tawar)</th>
<th>Dussart (plankton air tawar dan laut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraplankton</td>
<td>< 5 µ</td>
<td>-</td>
</tr>
<tr>
<td>Ultranannoplankton</td>
<td>-</td>
<td>< 2 µ</td>
</tr>
<tr>
<td>Nannoplankton</td>
<td>5 – 50 µ</td>
<td>2 – 20 µ</td>
</tr>
<tr>
<td>Microplankton</td>
<td>50 – 500 µ</td>
<td>20 – 200 µ</td>
</tr>
<tr>
<td>Mesoplankton</td>
<td>500 – 1000 µ</td>
<td>200 – 2000 µ</td>
</tr>
<tr>
<td>Makroplankton</td>
<td>> 1000 µ</td>
<td>-</td>
</tr>
<tr>
<td>Megaplankton</td>
<td>-</td>
<td>> 2000 µ</td>
</tr>
</tbody>
</table>

Secara umum keberadaan plankton di perairan akan dipengaruhi oleh tipe perairannya (mengalir dan tergenang), kualitas kimia dan fisika perairan (misalnya: suhu, kecerahan, arus, pH, kandungan CO₂ bebas, kandungan unsur-unsur hara), dan adanya kompetitor-kompetitor dan atau pemangsa-pemangsa plankton. Pada perairan tergenang (misalnya; kolam, rawa, situ, danau), keberadaan plankton akan berbeda dari waktu ke waktu (temporal differences) dan berbeda pula dalam menempati ruang atau kolom air (spatial differences). Sedangkan pada perairan mengalir unsur waktu dan ruang relative tidak berbeda nyata, kecuali jika ada kasus pencemaran sungai oleh aktifitas manusia.

Berdasarkan jenisnya plankton dibedakan menjadi:

(1) Phytoplankton (tumbuhan) mendapat makanan dari difusi air dan beberapa mampu berfotosintesis, berperan sebagai produser primer
dalam perairan. Cyanophyta, Chlorophyta dan Euglena adalah jenis fitoplankton yang melimpah di perairan tawar, sedangkan dinoflagellata dan pyrrophyta banyak terdapat di perairan laut. Peran phytoplankton dalam perairan berperan sebagai:

(a) digunakan sebagai pakan alami hewan budidaya perairan
(b) dipakai untuk mengetahui iklim pada periode geologi yang berbeda dalam penentuan palaentologi (fossil) seperti coccolithopora dan diatom yang memiliki kulit (skeleton) yang mampu berperan mengidentifikasi daerah alami laut.
(c) Ciri spesifik spesies yang melimpah pada suatu daerah terentu digunakan sebagai indikator kesuburan perairan daerah tropis dan subtropics.
(d) Berperan sebagai indikator pencemaran sekunder, sebagai deteksi keberadaan zooplankton yang mengkonsumsinya.
(e) Pada perairan laut 100% fitoplankton dimakan oleh zooplankton, sedangkan di perairan laut hanya 10 % fitoplankton yang dimakan oleh zooplankton

(2) Zooplankton (binatang) mampu bergerak secara horizontal dan vertical namun lemah, didominasi oleh crustacean dan cladosera. Zooplankton dapat juga digunakan sebagai indicator pencemaran. Zooplankton dibedakan menjadi 2 kelompok berdasarkan fase hidupnya yaitu:

(a) Holoplankton, organisme yang seluruh fase hidupnya memiliki sifat planktonik (contoh: Diatom, Dinoflagellata, Copepode)
(b) Meroplankton, organisme yang sebagian dari fase hidupnya bersifat planktonik sebelum berkembang menjadi nekton atau benthos (contoh: larva teripang, larva bintang laut, larva cacing laut)
Plankton dalam perairan berperan sebagai:

(a) Penyedia makanan pemula bagi seluruh konsumen: zooplankton & anak ikan
(b) Sumber oksigen terlarut (fotosintesis)
(c) Fondasi dari siklus makanan di perairan
(d) Indikasi pencemaran suatu perairan

Gambar 18. Plankton (a) Fitoplankton (b) Zooplankton

2) Benthos

Benthos adalah organisme yang menempel atau istirahat pada dasar atau yang hidup pada sedimen dasar perairan. Bentos dapat dibedakan menjadi zoobentos (hewan) dan fitobentos (tumbuhan).

Hewan bentos hidup relatif menetap, sehingga baik digunakan sebagai petunjuk kualitas lingkungan, karena selalu kontak dengan limbah yang masuk ke habitatnya. Kelompok hewan tersebut dapat lebih mencerminkan adanya perubahan faktor-faktor lingkungan dari waktu ke waktu, karena hewan bentos terus menerus terdedah oleh air yang kualitasnya berubah-ubah. Diantara hewan bentos yang relatif mudah diidentifikasi dan peka terhadap perubahan lingkungan perairan adalah
jenis-jenis yang termasuk dalam kelompok invertebrata makro. Kelompok ini lebih dikenal dengan makrozoobentos.

Keberadaan hewan bentos pada suatu perairan, sangat dipengaruhi oleh berbagai faktor lingkungan, baik biotik maupun abiotik. Faktor biotik yang berpengaruh diantaranya adalah produsen, yang merupakan salah satu sumber makanan bagi hewan bentos. Adapun faktor abiotik adalah fisika-kimia air yang diantaranya: suhu, arus, oksigen terlarut (DO), kebutuhan oksigen biologi (BOD) dan kimia (COD), serta kandungan nitrogen (N), kedalaman air, dan substrat dasar.

Zoobentos merupakan hewan yang sebagian atau seluruh siklus hidupnya berada di dasar perairan, baik yang sesil, merayap maupun menggali lubang (Odum 1993). Hewan ini memegang beberapa peran penting dalam perairan seperti dalam proses dekomposisi dan mineralisasi material organik yang memasuki perairan, serta menduduki beberapa tingkatan trofik dalam rantai makanan (Odum, 1993).

Benthos memegang beberapa peran penting dalam perairan seperti dalam proses dekomposisi dan mineralisasi material organik yang memasuki perairan serta menduduki beberapa tingkatan trofik dalam rantai makanan. Suwondo dkk, (2004) juga mengemukakan bahwa Benthos merupakan organisme perairan yang keberadaannya dapat dijadikan indikator perubahan kualitas biologi perairan sungai. Selain itu, organisme bentos juga dapat digunakan sebagai indikator biologis dalam mempelajari ekosistem sungai. Hal ini disebabkan adanya respon yang berbeda terhadap suatu bahan pencemar yang masuk dalam perairan sungai dan bersifat immobile.

Benthos sendiri mempunyai berbagai ciri-ciri yang diantaranya menurut Sudarjanti dan Wijarni (2006) adalah:
a) Mempunyai toleransi yang berbeda terhadap berbagai tipe pencemaran dan mempunyai reaksi yang cepat.
b) Ditemukan melimpah di perairan, terutama di ekosistem sungai, dipengaruhi oleh berbagai tipe polutan yang ada.
c) Mempunyai keanekaragaman yang tinggi dan mempunyai respon terhadap lingkungan yang stress.
d) Hidup melekat didasar perairan.
e) Mempunyai siklus hidup yang panjang.

Berdasarkan ukurannya, organisme hewan bentos digolongkan atas:
a) Makrobentos (0,425 – 15 mm)
b) Meiobentos (0,05 – 1 mm)
c) Mikrobentos (< 50 µ, misalnya Protozoa, Rotifer, dan Nematode)

Organisme yang termasuk makrozoobentos diantaranya adalah: Crustacea, Isopoda, Decapoda, Oligochaeta, Mollusca, Nematoda dan Annelida. Taksa-taksa tersebut mempunyai fungsi yang sangat penting di dalam komunitas perairan karena sebagian dari padanya menempati tingkatan trofik kedua ataupun ketiga. Sedangkan sebagian yang lain mempunyai peranan yang penting di dalam proses mineralisasi dan pendaurulangan bahan-bahan organik, baik yang berasal dari perairan maupun dari daratan.

Mahmudi, dkk, (1999), juga mempertegas bahwa makrozoobentos mempunyai peranan penting di ekosistem sungai, yaitu : (1) dapat memberikan informasi mengenai pemindahan dan penggunaan energi dalam ekosistem sungai, (2) mempunyai peranan dalam proses self purification sungai, dan (3) dapat digunakan untuk kepentingan restorasi perairan sungai dengan cara menciptakan habitat yang mendorong kolonisasi makrozoobentos. Komunitas makrozoobentos bahkan menjadi sumber energi untuk perikanan di ekosistem sungai.
Cara menentukan kualitas perairan berdasarkan Benthos yang ada di perairan tersebut salah satunya yaitu dengan pendekatan kualitatif dimana kita melihat jenis-jenis daripada Benthos yang hidup di perairan itu sendiri. Jenis-jenis bentos berdasarkan tingkat kerusakan perairan dikemukakan oleh Mulyanto (1995) sebagai berikut:

a) Perairan bersih adalah Planaria, Perla, Isoperia, Leuctra, Nemoura, Eodyonurus dan Ephemera.

b) Perairan tercemar organik ringan adalah Caenis, Ephemerella, Baetis, Limnophilus dan Hydropsyche.

c) Perairan tercemar organik sedang adalah Simulium, Lymnaea dan Physa.

d) Perairan tercemar organik berat adalah Chironomous dan Tubifex.
Gambar 19. Bentos sebagai indikator perairan (a) Planaria, (b) Leuctra, (c) Ephemerella, (d) Hydropsyche, (e) Lymnaea dan (f) Tubifex

Dari beberapa penelitian yang telah dilakukan, organisme bentos melakukan migrasi vertical di dalam substrat. Penyebab migrasi diduga karena beberapa kemungkinan, yaitu:

a) menghindar dari predator,
b) menghindar dari intensitas cahaya yang sampai ke dasar,
c) menghindar dari adanya bahan-bahan pencemar di permukaan substrat.
Organisme benthos juga dapat dibagi menjadi 2 kelompok, berdasarkan habitat hidupnya antara lain:

- **Infauna**, kelompok zoobenthos dan bakteri dari berbagai ukuran yang hidup di dalam dasar sedimen, yang termasuk ke dalam golongan ini adalah cacing dan kerang. Meskipun hidup di dalam dasar sedimen kelompok ini memiliki bentuk tubuh yang dapat menghubungkan dengan air yaitu dengan menggunakan organ yang menyerupai pipa atau membuat terowongan dalam sedimen.

- **Epifauna**, kelompok zoobentos yang hidup berhimpitan dengan permukaan yang kasar atau keras (seperti batu karang, kerang-kerangan dan tumpukan pasir) atau di atas permukaan teluk. Yang termasuk kelompok ini adalah tiram, kerang, remis, siput, bintang laut, teripang

![Gambar 20. Makrobenthos (a) kepiting laut, (b) teripang, (c) bintang laut](image_url)
Berdasarkan pertimbangan dan uraian diatas, maka metode pengambilan sampel organisme bentos dapat digolongkan sebagai berikut

- Metode kolonisasi (*container sampler* atau *core sampler*)
- Metode perangkap (*trap sampler*)
- Metode tangkap segera (*impedite sampler*, seperti *surbur* dan *eikman dragde*)

3) Nekton

Nekton adalah kelompok organisme yang tinggal di dalam kolom air (*water column*) baik di perairan tawar maupun laut. Kata “nekton” diberikan oleh Ernst Haeckel tahun 1890 yang berasal dari kata Yunani (Greek) yang artinya berenang (*the swimming*) yang meliputi (*biofluidynamics, biomechanics, functional morphology of fluid locomotion, locomotor physiology*). Ilmunya disebut Nektology dan orangnya disebut sebagai nektologis.

Sementara pengertian dari nekton bahari adalah hewan-hewan nektonik yang tersebar di zona epipelagik pada laut terbuka. Nekton bahari merupakan organisme laut yang sangat bermanfaat bagi manusia terutama untuk perbaikan gizi dan peningkatan ekonomi. Tumpukan bangkai nekton merupakan bahan dasar bagi terbentuknya mineral laut seperti gas dan minyak bumi setelah mengalami proses panjang dalam jangka waktu ribuan bahkan jutaan tahun.

Nekton (hewan) laut sebagian besar terdiri dari tiga kelas :

a) Vertebrata, bentuk kontribusi terbesar, hewan-hewan ini juga didukung oleh tulang atau tulang rawan.

b) Moluska, merupakan hewan seperti cumi-cumi dan kerang.

c) Crustacea, adalah hewan seperti lobster dan kepiting.
Berdasarkan kelompok ikan yang berbeda dijumpai dalam kelompok nekton:

- **Holoepipelagik**

 Holoepipelagik merupakan kelompok ikan yang menghabiskan seluruh waktunya di daerah epipelagik. Kelompok ikan ini mencakup ikan-ikan hiu tertentu (cucut, martil, hiu mackerel, cucut biru), kebanyakan ikan terbang, tuna, setuhuk, cucut gergaji, lemuru, ikan dayung, dan lain-lain.

- **Meropilagik**

 Meropipelagik merupakan kelompok ikan yang menghabiskan sebagian waktu hidupnya di daerah epipelagik. Meropelagik dapat dibagi lagi berdasarkan pola hidup masing-masing organisme, diantaranya:

 - Organisme yang menghabiskan sebagian waktu hidupnya di daerah epipelagik, kelompok ini beragam dan mencakup ikan yang menghabiskan masa dewasanya di epipelagik tetapi memijah di daerah pantai. Contohnya: haring, geger lintang jinak, dolpin, kacang-kacang.

 - Organisme yang hanya memasuki daerah epipelagik pada waktu-waktu tertentu, seperti ikan perairan-dalam semacam ikan lentera yang bermigrasi ke permukaan pada malam hari untuk mencari makan.

 - Organisme yang menghabiskan awal daur hidupnya di epipelagik, tetapi masa dewasanya di daerah lain. Contohnya: juvenile.
Gambar 21. Nekton (a) ikan, (b) cumi-cumi, (c) penyu dan (d) kuda laut

Beberapa kondisi lingkungan perlu diperhatikan karena memberikan perbedaan yang jelas bagi nekton dan di mana adaptasi terjadi:

- laut merupakan daerah “tiga dimensi” yang sangat besar.
- tidak ada substrat padat di mana pun, sehingga hewan-hewan ini selalu melayang dalam medium yang transparan tanpa perlindungan terhadap predator yang potensial. Oleh sebab itu, tidak ada tempat perlindungan bagi hewan yang berpindah dari satu tempat ke tempat lain secara horizontal.
- kurangnya substrat, yang berarti tidak adanya pendukung yang kuat bagi hewan yang kebanyakan mempunyai daging yang lebih padat daripada air laut disekelilingnya.
Kombinasi antara keadaan tiga dimensi dan kurangnya rintangan, memudahkan evolusi adaptasi untuk mobilitas yang besar. Besarnya mobilitas dan kemampuan untuk menempuh jarak-jarak jauh pada gilirannya menimbulkan perkembangan sistem saraf dan indra (sensory) yang akan menangkap dan mengolah informasi yang diperlukan untuk menjelajahi daerah, mencari dan menangkap makanan, serta untuk menghindari predator. Kurangnya perlindungan serta besarnya ukuran kebanyakan nekton, juga menyebabkan perkembangan kecepatan renang yang tinggi untuk menghindari predator dan sekaligus untuk mencari makanan. Kamuflase juga merupakan usaha yang lain. Keadaan tersuspensinya tubuh hewan nektonik yang kerapatan tubuhnya lebih besar daripada kerapatan air laut secara terus-menerus menyebabkan perkembangan progresif berbagai adaptasi agar dapat tetap terapung.

4) Neuston

5) Perifiton

Istilah perifiton diartikan sebagai sekumpulan organisme (berukuran mikro) yang menempel atau menetap pada suatu substrat. Sedangkan pada literature berbahasa jerman, istilah Aufwuchs dipakai untuk menggantikan istilah perifiton karena memiliki arti yang lebih luas. Aufwuchs adalah sekumpulan organisme yang menempel atau menentap pada suatu substrat, termasuk didalamnya kelompok organisme hewani atau nabati yang bergerak lambat (merayap atau merangkak) pada substrat tersebut. Kelompok ini, tidak seperti bentos, tidak dapat menembus substrat.

Pada tulisan ini akan digunakan perifiton, karena hanya kelompok organisme yang tetap melekat saja yang terambil ketika substrat diangkat dari air pada waktu pengambilan sampel, sedangkan kelompok lainnya (sebagaimana definisi kelompok aufwuchs) akan terlepas atau lari dari substrat.

Berdasarkan tipe substrat tempat menempelnya perifition dapat digolongkan:
1. **Epiphytic**, yaitu organisme perifiton yang menempel pada bagian-bagian dari tumbuhan, misalnya pada daun, batang atau akar dari tumbuhan air

2. **Epizoich**, yaitu organisme perifiton yang menempel pada bagian tubuh hewan air, misalnya pada sisik ikan, cangkang penyu, dan sebagainya.

3. **Epipelic**, yaitu organisme perifiton yang menempel pada lumpur di dasaran perairan

4. **Epilitic**, organisme perifiton yang menempel pada batu-batuan

Gambar 23. Perifiton (a) *Halophila* sp, (b) anelida, (c) organisme perifiton yang menutupi cangkang *Eustrombus gigas*
Selain dipengaruhi oleh tipe substrat keberadaan perifiton, baik kelimpahan jenis maupun individu, banyak dipengaruhi oleh iklim, arus air, kekeruhan, suhu air dan adanya bahan pencemar di perairan. Oleh karena itu pengetahuan tentang perifiton disamping berguna untuk mengetahui produktifitas (kesuburan) suatu perairan juga dapat menjadi indikator dalam pencemaran air.

3. Refleksi

Isilah pernyataan berikut ini sebagai refleksi pembelajaran!

a) Dari hasil kegiatan pembelajaran apa saja yang telah anda peroleh dari aspek pengetahuan, keterampilan dan sikap?

b) Apakah anda merasakan manfaat dari pembelajaran tersebut, jika ya apa manfaat yang anda peroleh? jika tidak mengapa?

c) Apa yang anda rencanakan untuk mengimplementasikan pengetahuan, keterampilan dan sikap dari apa yang telah anda pelajari?

d) Apa yang anda harapkan untuk pembelajaran berikutnya?
4. **Tugas**

Buatlah suatu pengamatan tentang parameter fisika, kimia dan biologi di suatu perairan umum seperti sungai, waduk atau laut dan parameter fisika, kimia dan biologi di suatu perairan budidaya seperti kolam, tambak atau jaring apung. Bandingkan masing-masing karakteristik dari parameter-parameter tersebut, jelaskan dan diskusikan perbedaan dan persamaannya dengan kelompok anda lalu paparkan di depan kelas!

5. **Tes Formatif**

1 Dibawah ini yang termasuk ke dalam kelompok parameter fisika air adalah...
 a. Salinitas, suhu, oksigen terlarut
 b. Oksigen terlarut, karbondioksida bebas, ammonia
 c. Intensitas cahaya, kekeruhan, suhu
 d. Gas metana, suhu, salinitas

2 Berdasarkan hubungan intensitas matahari dengan kemampuan fotosintesis di perairan secara vertikal terbagi menjadi...
 a. Mintakat eufotik, disfotik, afotik
 b. Mintakat eufotik, disfotik, biotik
 c. Mintakat abiotik, disfotik, afotik
 d. Mintakat eufotik, biotik, abiotik

3 Penyebaran suhu di laut terutama disebabkan oleh...
 a. Intensitas matahari
 b. Pergerakan air (arus dan turbulensi)
 c. Kekeruhan dan kecerahan
 d. Salinitas
4. Stratifikasi suhu pada kolom air pada lapisan epilimnion memiliki penurunan suhu yang relatif kecil yaitu...
 a. konstan
 b. 21 °C menjadi 15 °C
 c. 28 °C menjadi 21 °C
 d. 32 °C menjadi 28 °C

5. Faktor-faktor yang mempengaruhi tegangan permukaan air adalah...
 a. Bahan organik dan garam-garam terlarut
 b. Kekeruhan dan kecerahan air
 c. Padatan tersuspensi dan padatan terlarut
 d. Oksigen dan karbondioksida bebas

6. Lokasi di bumi akan mengalami dua kali pasang dan dua kali surut dalam sehari dikenal dengan istilah...
 a. Tide generating force
 b. Spring tide
 c. Neap tide
 d. Semi diurnal tides

7. Bahan organik di perairan biasanya dimanfaatkan oleh...
 a. Perkembangan alga dan jasad renik
 b. Meningkatkan suhu perairan
 c. Menambah kekeruhan air
 d. Meningkatkan salinitas air

8. Unsur hara yang sangat diperlukan oleh organisme nabati dalam perairan adalah...
 a. unsur N, Cu, Vd
b. unsur N, P, Mg
c. unsur N, P, Mo
d. unsur N, Mg, Zn

9 Berikut ini merupakan sumber oksigen terlarut di perairan yaitu, kecuali...
a. Difusi langsung dari udara
b. Hasil fotosintesis tanaman berklorofil
c. Proses respirasi hewan maupun tanaman dalam air
d. Pergerakan air yang teratur

10 Kelompok organisme yang tinggal di dalam kolom air (water column) baik di perairan tawar maupun laut disebut...
a. plankton
b. bentos
c. nekton
d. perifiton

C. Penilaian

1. Penilaian Sikap

INSTRUMEN PENILAIAN PENGAMATAN SIKAP
DALAM PROSES PEMBELAJARAN

Petunjuk:
Berilah tanda cek (√) pada kolom skor sesuai sikap yang ditampilkan oleh peserta didik, dengan kriteria sebagai berikut:
Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek Pengamatan</th>
<th>Skor</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sebelum memulai pelajaran, berdoa sesuai agama yang dianut siswa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Interaksi siswa dalam konteks pembelajaran di kelas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kesungguhan siswa dalam melaksanakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ketelitian siswa selama mengerjakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kejujuran selama melaksanakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Disiplin selama melaksanakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tanggung jawab siswa mengerjakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kerjasama antar siswa dalam belajar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Menghargai pendapat teman dalam kelompok</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Menghargai pendapat teman kelompok lain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Memiliki sikap santun selama pembelajaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nilai Akhir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kualifikasi Nilai pada penilaian sikap

<table>
<thead>
<tr>
<th>Skor</th>
<th>Kualifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00 – 1,99</td>
<td>Kurang</td>
</tr>
<tr>
<td>2,00 – 2,99</td>
<td>Cukup</td>
</tr>
<tr>
<td>3,00 – 3,99</td>
<td>Baik</td>
</tr>
<tr>
<td>4,00</td>
<td>Sangat baik</td>
</tr>
</tbody>
</table>

\[
NA = \frac{\sum \text{skor}}{12}
\]
<table>
<thead>
<tr>
<th>ASPEK</th>
<th>KRITERIA</th>
<th>SKOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Berdoa sesuai agama yang dianut siswa</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Interaksi siswa dalam konteks pembelajaran</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Ketelitian siswa selama mengerjakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Kejujuran selama melaksanakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Disiplin selama melaksanakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Memiliki sikap santun selama pembelajaran</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Tanggung jawab siswa mengerjakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Kesungguhan dalam mengerjakan tugas</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Kerjasama antar siswa dalam belajar</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>ASPEK</td>
<td>KRITERIA</td>
<td>SKOR</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>• Menghargai pendapat teman dalam kelompok</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>• Menghargai pendapat teman dalam kelompok</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
</tbody>
</table>

DAFTAR NILAI SISWA ASPEK SIKAP DALAM PEMBELAJARAN TEKNIK NON TES BENTUK PENGAMATAN

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuann ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Siswa</th>
<th>Berdoa sebelum belajar</th>
<th>Interaksi</th>
<th>Ketelitian</th>
<th>Kejujuran</th>
<th>Disiplin</th>
<th>Santun</th>
<th>Tanggungjawab</th>
<th>Kesungguhan</th>
<th>Kerjasama</th>
<th>Menghargai dlm klpk</th>
<th>Menghargai klpk lain</th>
<th>Jml</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
DAFTAR NILAI SISWA ASPEK SIKAP DALAM PEMBELAJARAN
PENILAIAN DIRI

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan:
Pertemuann ke :

<table>
<thead>
<tr>
<th>NO</th>
<th>PERNYATAAN</th>
<th>YA</th>
<th>TIDAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Saya mampu membedakan parameter fisika, kimia dan biologi perairan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Saya mampu menyebutkan dan menjelaskan minimal 5 parameter fisika perairan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Saya mampu menyebutkan dan menjelaskan minimal 5 parameter kimia perairan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Saya mampu menyebutkan dan menjelaskan minimal 5 parameter biologi perairan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Saya mampu menjelaskan minimal 5 faktor-faktor yang mempengaruhi parameter-parameter kualitas air</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Penilaian Pengetahuan

a. Jelaskan perbedaan parameter fisika, kimia dan biologi dalam kualitas air budidaya perairan!
b. Sebutkan berbagai parameter fisika air yang berpengaruh terhadap kehidupan ikan yang dibudidayakan!
c. Sebutkan berbagai parameter kimia air yang berpengaruh terhadap kehidupan ikan yang dibudidayakan!
d. Jelaskan perbedaan antara plankton, nekton, bentos dan perifiton dalam parameter biologi air!
3. Penilaian Keterampilan

INSTRUMEN PENILAIAN PENGAMATAN ASPEK KETERAMPILAN
DALAM PROSES PEMBELAJARAN

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

Petunjuk :
Berilah tanda cek (√) pada kolom skor sesuai sikap yang ditampilkan oleh peserta didik, dengan kriteria sebagai berikut :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek Pengamatan</th>
<th>Skor</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Membaca buku bacaan / sumber belajar lainnya sebelum pelajaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Memahami konsep 5M dalam pembelajaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mengaplikasikan kegiatan 5M yang dicantumkan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mengidentifikasi parameter fisika perairan dengan baik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mengidentifikasi parameter fisika perairan dengan baik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mengidentifikasi parameter fisika perairan dengan baik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Menulis laporan praktek sesuai out line yang dianjurkan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Menulis laporan dengan memaparkan dan membahas data hasil praktek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan skor :
1. : tidak terampil, belum dapat melakukan sama sekali
2. : sedikit terampil, belum dapat melakukan tugas dengan baik
3. : cukup terampil, sudah mulai dapat melakukan tugas dengan baik
4. : terampil, sudah dapat melakukan tugas dengan baik
DAFTAR NILAI SISWA ASPEK KETERAMPILAN
TEKNIK NON TES BENTUK PENUGASAN PROYEK

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan:
Pertemuan ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek yang dinilai</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Persiapan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembuatan rencana kerja (baik = 3, kurang baik = 2, tidak baik = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persiapan alat dan bahan (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pelaksanaan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keterampilan mengidentifikasi parameter fisika kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Keterampilan mengidentifikasi parameter kimia kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keterampilan mengidentifikasi parameter biologi kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keterampilan menganalisa hubungan parameter-parameter kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pelaporan Hasil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistematika laporan (baik = 3, kurang baik = 2, tidak baik = 1)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Penggunaan bahasa (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penulisan ejaan (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tampilan (menarik = 3, kurang menarik = 2, tidak menarik = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skor maksimal</td>
<td>30</td>
</tr>
</tbody>
</table>

Nilai projek = (skor perolehan : skor maksimal) x 100
KEGIATAN BELAJAR 2. PENGAMBILAN SAMPEL KUALITAS AIR

A. Deskripsi

Pengambilan sampel untuk pengukuran kualitas air merupakan materi yang saling berhubungan dengan materi pengukuran kualitas air. Pengambilan sampel untuk pengukuran kualitas air akan membahas mengenai:

1. Lokasi pengambilan sampel
2. Teknik pengambilan sampel parameter kualitas air
3. Teknik penanganan sampel
4. Teknik pengawetan sampel

B. Kegiatan Belajar

1. Tujuan Pembelajaran

Peserta didik yang telah mempelajari buku teks ini diharapkan mampu:
 a. menentukan lokasi pengambilan sampel
 b. mengambil sampel pengukuran parameter kualitas air
 c. menangani sampel yang telah diambil
 d. mengawetkan sampel kualitas air yang akan diukur

2. Uraian Materi

Pengambilan sampel untuk pengukuran kualitas air merupakan salah satu titik kritis pada tahapan pengukuran kualitas air. Pengambilan sampel merupakan satu langkah awal yang dapat menentukan keakuratan data kualitas air yang akan digunakan. Sebelum mempelajari teknik pengambilan sampel sebaiknya anda mengetahui macam-macam sampel/ contoh air terlebih dahulu.
Sampel air permukaan berasal dari air sungai, air danau, air waduk, mata air, air rawa, dan air gua. Pengujian air permukaan bertujuan untuk:

a. Mengetahui kualitas air permukaan sehingga dapat ditentukan peruntukannya sebagai, misalnya air minum, air untuk rekreasi, air untuk industri, air untuk perikanan, air pertanian, dan sebagainya

b. Membuktikan dan mengendalikan pencemaran
c. Menetapkan kebijakan pengelolaan air permukaan

Maksud pengambilan sampel kualitas air adalah mengumpulkan volume sampel kualitas air yang akan diteliti dengan jumlah sekecil mungkin, tetapi masih mewakili (representatif), yaitu masih mempunyai sifat-sifat yang sama dengan sumber sampel kualitas air tersebut (misal badan air/sungai, danau/waduk, mata air, sumur dll.).

Karakteristik dari perairan mungkin tidak banyak berubah selama beberapa waktu, tetapi banyak juga aliran air yang selalu berubah di dalam waktu singkat. Contohnya karakteristik air di hulu umumnya hanya berubah karena pengaruh hujan sehingga perubahan dapat bersifat harian bahkan jam. Untuk memperoleh contoh yang mewakili keadaan yang sesungguhnya dapat dipilih tiga metode:

1. Contoh Sesaat (Grap Sample)

Contoh sesaat mewakili keadaan air pada suatu saat dari suatu tempat. Apabila suatu sumber air mempunyai karakteristik yang tidak banyak berubah didalam suatu periode atau didalam batas jarak waktu tertentu maka contoh sesaat tersebut cukup mewakili keadaan waktu dan tempat tersebut. Umumnya metode ini dapat dipakai untuk sumber air alamiah tetapi tidak mewakili keadaan air buangan atau sumber air yang banyak dipengaruhi oleh bahan buangan. Bila suatu sumber atau air buangan diketahui mempunyai karakteristik yang banyak berubah maka beberapa
contoh sesaat diambil berturut-turut untuk jangka waktu tertentu dan
pemeriksanya dilakukan sendiri-sendiri, tidak disatukan seperti pada
metode gabungan. Jangka waktu pengambilan sampel air berkisar antara 5
menit sampai 1 jam atau lebih, umumnya periode pengambilan sampel
selama 24 jam. Pemeriksaan parameter tertentu memerlukan metode
sesaat seperti pengukuran suhu, pH, kadar gas terlarut, CO$_2$, sulfida, sulfat,
sianida dan klorin.

2. Contoh Gabungan Waktu (Composite Sample)

Contoh gabungan waktu adalah campuran contoh-contoh sesaat yang
diambil dari suatu tempat yang sama pada waktu yang berbeda. Hasil
pemeriksaan contoh gabungan menunjukkan keadaan merata dari tempat
tersebut didalam suatu periode. Umumnya pengambilan sampel dilakukan
secara terus menerus selama 24 jam tetapi dalam beberapa hari dilakukan
secara intensif untuk jangka waktu yang lebih pendek. Untuk
mendapatkan contoh gabungan waktu (composite) perlu diperhatikan agar
setiap contoh yang dicampurkan mempunyai volume yang sama. Apabila
volume akhir dari suatu contoh gabungan 1-5 Liter, maka untuk selang
waktu 1 jam selama periode pengambilan sampel 24 jam dibutuhkan
volume contoh masing-masing sebanyak 200-220 mL.

3. Contoh Gabungan Tempat (Integreted Sample)

Merupakan campuran contoh-contoh sesaat yang diambil dari tempat yang
berbeda pada waktu yang sama. Hasil pemeriksaan contoh gabungan
menunjukkan keadaan merata dari suatu daerah atau tempat pemeriksaan.
Metode ini berguna apabila diperlukan pemeriksaan kualitas air dari suatu
penampang aliran sungai yang dalam atau lebar atau bagian-bagian
penampang tersebut memiliki kualitas yang berbeda. Metode ini umumnya
tidak dilakukan untuk pemeriksaan kualitas air danau atau air waduk
karena pada umumnya menunjukkan gejala yang berbeda kualitasnya karena kedalaman atau lebarannya. Dalam hal ini selalu dipergunakan metode pemeriksaan terpisah.

Keberhasilan metode pengambilan sampel sangat tergantung pada peralatan untuk pengambilan sampel, teknik atau cara pengambilan, pelaksanaan dan penanganan serta penyempurnaan analisis Laboratorium. lebih dari 50% ketidakabsahan data analisa kuallitas air dipengaruhi oleh teknik pengambilan sampel yang tidak sesuai.

a. Penentuan lokasi pengambilan sampel

Lokasi pengambilan sampel dapat dilakukan pada air permukaan dan air tanah. Pengambilan sampel pada air permukaan meliputi air sungai, danau, waduk, rawa, dan genangan air lainnya. Penentuan kualitas air pada daerah pengaliran sungai didasarkan pada:

- Sumber air alamiah, yaitu lokasi pada tempat yang belum atau masih sedikit mengalami pencemaran;
- Sumber air tercemar, yaitu lokasi pada tempat yang telah mengalami perubahan atau di hilir sumber pencemaran;
- Sumber air yang dimanfaatkan, yaitu lokasi pada tempat penyadapan pemanfaatan sumber air.

Sedangkan pemantauan kualitas air pada danau/waduk didasarkan pada:

- Tempat masuknya sungai ke danau/waduk
- Di tengah danau/waduk
- Lokasi penyadapan air untuk pemanfaatan
- Tempat keluarnya air danau/waduk
b. Penentuan lokasi pengambilan sampel air sungai

Langkah awal dalam menentukan lokasi pengambilan sampel air sungai adalah mengetahui keadaan geografi sungai dan aktifitas di sekitar daerah aliran sungai. Secara umum, lokasi pengambilan sampel air sungai meliputi:

- **Daerah hulu atau sumber air alamiah, yaitu lokasi yang belum tercemar.** Lokasi ini berperan untuk identifikasi kondisi asal atau *base line* sistem tata air.
- **Daerah pemanfaatan air sungai, yaitu lokasi di mana air sungai dimanfaatkan untuk bahan baku air minum, air untuk rekreasi, industry, perikanan, pertanian, dan lain-lain. Tujuannya adalah untuk mengetahui kualitas air sebelum dipengaruhi oleh suatu aktifitas.
- **Daerah yang potensial terkontaminasi, yaitu lokasi yang mengalami perubahan kualitas air oleh aktivitas industri, pertanian, domestik, dan sebagainya.** Lokasi ini dipilih untuk mengetahui hubungan antara pengaruh aktivitas tersebut dan penurunan kualitas air sungai.
- **Daerah pertemuan dua sungai atau lokasi masuknya anak sungai.** Lokasi ini dipilih apabila terdapat aktivitas yang mempunyai pengaruh terhadap penurunan kualitas air sungai.
- **Daerah hilir atau muara, yaitu daerah pasang surut yang merupakan pertemuan antara air sungai dan air laut. Tujuannya untuk mengetahui kualitas air sungai secara keseluruhan.** Apabila data hasil pengujian di daerah hilir dibandingkan dengan data untuk daerah hulu, evaluasi tersebut dapat menjadi bahan kebijakan pengelolaan air sungai secara terpadu.
Gambar 24. Lokasi pengambilan sampel air sungai

Tabel 12. Perkiraan jarak pencampuran sempurna di sungai

<table>
<thead>
<tr>
<th>Lebar rata-rata (m)</th>
<th>Kedalaman rata-rata (m)</th>
<th>Perkiraan jarak pencampuran sempurna (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0,08 – 0,70</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,05 – 0,30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,03 – 0,20</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0,30 – 2,70</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0,20 – 1,40</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,10 – 0,90</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,08 – 0,70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,07 – 0,50</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1,30 – 11,0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,40 – 4,00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0,30 – 2,00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0,20 – 1,50</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>8,00 – 70,0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3,00 – 20,0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2,00 – 14,0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0,80 – 7,00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0,40 – 3,00</td>
</tr>
</tbody>
</table>

c. Penentuan jumlah titik pengambilan sampel air sungai

Tabel 13. Jumlah titik pengambilan sampel air sungai sesuai klasifikasinya

<table>
<thead>
<tr>
<th>Debit rata-rata tahunan (m3/detik)</th>
<th>Klasifikasi sungai</th>
<th>Jumlah titik pengambilan sampel</th>
<th>Jumlah kedalaman pengambilan sampel*</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>Kecil</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5 – 150</td>
<td>Sedang</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>150 – 1000</td>
<td>Besar</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>>1000</td>
<td>Sangat besar</td>
<td>Minimum 6 seperti pada sungai besar, jumlah titik</td>
<td>4</td>
</tr>
</tbody>
</table>
tambahan tergantung pada sungainya, kenaikan ditambah dengan faktor 2 (dua)

Catatan: (*) Sampel air sungai diambil pada 30 cm di bawah permukaan air dan/ atau 30 cm di atas dasar sungai dan harus dengan berhati-hati sehingga endapan dasar sungai (sedimen) tidak terambil

Penentuan titik pengambilan sampel air bertujuan agar pada saat pengambilan sampel, benda yang terapung di permukaan air dan endapan yang mungkin tergerus dari dasar sungai tidak ikut terambil. Titik pengambilan sampel air yang berupa air permukaan ditetapkan dengan ketentuan sebagai berikut:

- Pada sungai dengan debit kurang dari 5 m³/detik, sampel air diambil pada satu titik ditengah sungai pada 0,5 x kedalaman sungai.
- Pada sungai dengan debit antara 5 – 150 m³/detik, sampel air diambil dari 2 titik, masing-masing pada jarak 1/3 dan 2/3 lebar sungai pada 0,5 x kedalaman sungai.
- Pada sungai dengan debit lebih dari 150 m³/detik, sampel air diambil minimum dari 6 titik, masing-masing pada jarak ¼, ½, dan ¾ lebar sungai, pada 0,2 x kedalaman sungai dan 0,8 x kedalaman sungai.

Dalam prakteknya, jumlah titik tersebut sangat dipengaruhi oleh situasi dan kondisi air sungai. Untuk gambaran yang lebih detail, Tabel 13 dibawah menunjukkan jumlah titik pengambilan sampel air sungai berdasarkan klasifikasi dan debit rata-rata tahunan.
Tabel 14. Jumlah titik pengambilan sampel air sungai berdasarkan klasifikasi dan debit rata-rata tahunan

<table>
<thead>
<tr>
<th>Debit rata-rata tahunan (m³/detik)</th>
<th>Klasifikasi sungai</th>
<th>Jumlah kedalaman</th>
<th>Jumlah titik sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 (kedalaman air rata-rata < 1 m)</td>
<td>Sangat kecil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>< 5 (kedalaman rata-rata > 1 m)</td>
<td>Kecil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5 - 150</td>
<td>Sedang</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>150 - 1000</td>
<td>Besar</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>> 1000</td>
<td>Sangat besar</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

d : kedalaman air sungai; L : lebar sungai (Sumber Hadi, 2007)

d. Pengambilan sampel air di danau / waduk

Pada titik pengambilan sampel air danau atau waduk ditetapkan menurut ketentuan-ketentuan sebagai berikut;

- Pada danau atau waduk dengan kedalaman kurang dari 10 m, sampel air diambil dari dua titik, yaitu di permukaan dan di dasar danau/waduk
Pada danau atau waduk dengan kedalaman antara 10 m – 30 m, sampel diambil pada tiga titik, yaitu dipermukaan, lapisan termoklin, dan di dasar danau

Pada danau atau waduk dengan kedalaman antara 30 m – 100 m, sampel diambil pada titik, yaitu permukaan, lapisan termoklin (metalimnion), di atas lapisan hipolimnion, dan dasar danau/waduk

Pada danau atau waduk dengan kedalaman lebih dari 100 m, titik pengambilan sampel air dapat diperbanyak sesuai dengan keperluan.

e. Teknik Pengambilan Sampel Air

Teknik pengambilan sampel air permukaan harus disesuaikan dengan keperluannya, karena masing-masing teknik berbeda dalam pengambilan sampel dan penanganannya. Berikut dibawah ini teknik pengambilan sampel untuk berbagai keperluan :

Untuk pemeriksaan sifat fisika dan kimia air

- Siapkan alat pengambil sampel yang sesuai dengan keadaan sumber air;
- Bilas alat dengan sampel yang akan diambil;
- Ambil sampel sesuai dengan keperluan dan campurkan dalam penampung sementara hingga merata;
- Apabila sampel diambil dari beberapa titik, maka volume sampel yang diambil dari setiap titik harus sama.

Untuk pemeriksaan oksigen terlarut

a) Tahapan pengambilan sampel yang dilakukan secara langsung :

(1) Siapkan botol BOD volume ± 300 mL yang bersih dan bertutup asah;
(2) Celupkan botol dengan hati-hati,
(3) Isi botol sampai penuh, hindari terjadinya turbulensi dan gelembung udara pada saat pengisian botol; kemudian ditutup,
(4) Sampel siap untuk dianalisis.

b) Alat pengambilan khusus
Sampel air diambil sesuai dengan prosedur pemakaian alat tersebut.

Untuk pemeriksaan mikrobiologi

a) Pada air permukaan secara langsung
 (1) Siapkan botol yang volumenya 100 mL dan telah disterilkan pada suhu 120°C selama 15 menit atau dengan cara sterilisasi lain;
 (2) Pegang bagian bawah botol dan celupkan ± 20 cm di bawah permukaan air dengan posisi mulut botol berlawanan dengan arah aliran.

b) Pada air permukaan secara tidak langsung dari jembatan
 (1) Siapkan botol steril yang tutupnya terbungkus kertas aluminium;
 (2) Ikat botol dengan tali dan pasang pemberat di bagian dasar botol;
 (3) Buka tutup botol dan turunkan botol perlahan-lahan ke dalam permukaan air;
 (4) Tarik tali sambil digulung;
 (5) Buang sebagian isi botol hingga volumenya ±¾ volume botol;
 (6) Bakar bagian mulut botol, kemudian botol tutup lagi.

c) Untuk air tanah pada sumur gali
 Tahapan pengambilan sampel air sama dengan pada air permukaan

d) Air tanah pada kran air
 (1) Siapkan botol steril yang tutupnya terbungkus kertas aluminium;
 (2) Buka kran dan biarkan air mengalir selama 1 – 2 menit;
(3) Sterilkan kran dengan cara membakar mulut kran sampai keluar uap air;
(4) Alirkan lagi air selama 1 – 2 menit;
(5) Buka tutup botol dan isi sampai ±¾ botol;
(6) Bakar bagian mulut botol, kemudian botol ditutup.

Setelah lokasi dan peruntukan sampel ditentukan maka dapat dilakukan persiapan sarana dan prasarana terlebih dahulu untuk mempermudah pengambilan sampel. sarana dan prasarana yang perlu disiapkan antara lain :

Peralatan pengambilan sampel air harus memenuhi persyaratan sebagai berikut :

- Terbuat dari bahan yang tidak mempengaruhi sifat sampel air (misalnya untuk keperluan pemeriksaan logam, alat pengambilan sampel tidak terbuat dari logam),
- Mudah dicuci dari bekas sampel sebelumnya,
- Sampel mudah dipindahkan ke botol penampung tanpa ada sisa bahan tersuspensi di dalamnya,
- Kapasitas alat disesuaikan dengan keperluan dan tergantung dari maksud pemeriksaan,
- Mudah dan aman dibawa

Peralatan pengambilan sampel terdiri dari beberapa jenis, penggunaannya harus disesuaikan dengan

- Alat pengambil sampel sederhana (ember plastik, botol).
- Botol biasa diberi pemberat yang dapat digunakan pada kedalaman tertentu.
- Alat pengambil sampel setempat secara mendatar yang digunakan untuk pengambilan sampel di sungai atau air mengalir pada kedalaman tertentu.
- Alat pengambil sampel secara tegak, untuk mengambil sampel pada lokasi yang airnya tenang atau aliran sangat lambat pada kedalaman tertentu, seperti di danau, waduk dan muara sungai.
- Alat pengambil sampel pada kedalaman yang terpadu, untuk mendapatkan sampel yang mewakili semua lapisan air.
- Alat pengambil sampel secara otomatis, digunakan untuk sampel gabungan waktu dari air limbah atau air sungai tercemar, agar diperoleh kualitas air rata-rata selama periode tertentu.
- Alat pengambil sampel untuk pemeriksaan gas terlarut yang dilengkapi tutup sehingga alat dapat ditutup segera setelah terisi penuh.
- Alat pengambil sampel untuk pemeriksaan bakteri, yaitu botol gelas yang ditutup kapas atau aluminium foil, tahan panas dan tekanan selama proses sterilisasi.
- Alat pengambilan sampel untuk pemeriksaan plankton berupa jaringan yang berpori 173 mesh/inchi.
- Alat pengambil sampel untuk pemeriksaan hewan benthos, misalnya Ekman grap, digunakan untuk pengambilan sampel pada sumber air yang alirannya relatif kecil.

Tabel 15. Peralatan pengambilan sampel (sampling) kualitas air

<table>
<thead>
<tr>
<th>Peralatan</th>
<th>Kegunaan</th>
<th>Gambar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van dorn horizontal water sampler</td>
<td>Mengambil sampel air pada kedalaman tertentu</td>
<td></td>
</tr>
<tr>
<td>Kemmerer water sampler</td>
<td>Mengambil sampel air pada kedalaman tertentu</td>
<td></td>
</tr>
<tr>
<td>Peralatan</td>
<td>Kegunaan</td>
<td>Gambar</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Ekman Grab</td>
<td>Mengambil sampel benthos pada perairan tergenang</td>
<td></td>
</tr>
<tr>
<td>Surber sampler</td>
<td>Mengambil sampel benthos pada perairan mengalir</td>
<td></td>
</tr>
<tr>
<td>Ayakan benthos</td>
<td>Menyaring sampel benthos</td>
<td></td>
</tr>
<tr>
<td>Plankton net</td>
<td>mengambil sampel plankton</td>
<td></td>
</tr>
<tr>
<td>Peralatan</td>
<td>Kegunaan</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Cooler box</td>
<td>Penyimpanan sampel air untuk dibawa ke laboratorium</td>
<td></td>
</tr>
<tr>
<td>Botol sampel plastik</td>
<td>Wadah penampungan sampel air</td>
<td></td>
</tr>
</tbody>
</table>

Wadah sampel yang digunakan juga dapat terbuat dari berbagai macam bahan, namun ada beberapa persyaratan wadah sampel yang harus diperhatikan antara lain:

- Terbuat dari bahan gelas atau plastik
- Dapat ditutup dengan rapat
- Mudah dicuci dan tidak mudah pecah
- Wadah untuk pemeriksaan bakteri harus dapat disterilkan
- Tidak menyerap zat-zat kimia dari sampel
- Tidak melarutkan zat-zat kimia ke dalam sampel
- Tidak menimbulkan reaksi antar wadah dan sampel air

Waktu pengambilan sampel

Untuk pemantauan kualitas air, interval waktu pengambilan sampel diatur pada hari dan jam yang berbeda, sehingga dapat diketahui perbedaan kualitas air setiap hari maupun setiap jam. Sebagai contoh apabila
pengambilan sampel pertama dilakukan pada hari Senin jam 06.00, maka pengambilan sampel selanjutnya dilakukan pada hari Selasa jam 07.00, dst

Frekwensi pengambilan sampel

Frekwensi pengambilan sampel untuk keperluan pemantauan dilakukan berdasarkan keperluan atau apabila belum ditetapkan, maka sebagai pegangan dapat dilakukan sebagai berikut:

- Untuk sungai/saluran yang tercemar berat, setiap 2 minggu sekali, selama satu tahun;
- Untuk sungai/saluran yang tercemar ringan sampai sedang, sebulan sekali, selama satu tahun;
- Untuk air alami yang belum tercemar, setiap 3 bulan sekali selama satu tahun;
- Untuk air danau/waduk, setiap 2 bulan selama satu tahun;
- Untuk aliran air tanah, setiap 3 bulan selama satu tahun.

Dalam pengambilan sampel, sebaiknya digunakan wadah yang baru. Jika terpaksa menggunakan wadah bekas, wadah diperlakukan dengan perlakuan tertentu terlebih dahulu, yang dapat menjamin bahwa wadah tersebut bebas dari pengaruh sampel sebelumnya. Selain itu, wadah atau peralatan yang dapat bereaksi dengan limbah cair harus dihindarkan, misalnya wadah atau peralatan yang terbuat dari logam yang dapat mengalami korosi oleh air yang bersifat asam. Alat yang digunakan juga harus mudah dicuci atau dibersihkan untuk menghindari kontaminasi, mudah dan aman dibawa ke lokasi sampling.

Pengambilan sampel air dapat dilakukan melalui langkah-langkah kerja sebagai berikut:
Menyiapkan alat yang telah terkalibrasi untuk pengambilan sampel yang sesuai dengan keadaan sumber air

Alat-alat tersebut dibilas sebanyak tiga kali dengan sampel air yang akan diambil

Dilakukan pengambilan sampel sesuai dengan keperluan; sampel yang diperoleh dicampur secara merata di dalam penampung sementara atau container yang harus bebas dari kontaminan

Jika pengambilan sampel dilakukan pada beberapa titik maka volume sampel dari setiap titik harus sama.

Penentuan titik sampling atau lokasi sampling dapat didukung dengan GPS dan kamera

Gambar 1 Kegiatan pengambilan sampel

f. **Teknik penanganan sampel**

Setelah pengambilan sampel, air sampel sebaiknya segera dianalisis. Jika terpaksa harus disimpan, setiap parameter kualitas air memerlukan
perlakuan tertentu terhadap sampel. Selain perlakuan dengan bahan kimia, pengawetan yang paling umum dilakukan adalah pendinginan pada suhu 4ºC selama transportasi dan penyimpanan. Pada suhu tersebut, aktivitas bakteri terhambat.

Sampel yang ditunda pengukurannya dan terpaksa harus dilakukan penyimpanan sebaiknya dilakukan labeling pada botol sampel yang digunakan. Pelabelan botol sampel sangat penting dilakukan untuk menghindari kekeliruan saat analisa sampel. Pelabelan minimal meliputi pencatatan data tentang:

1) Jenis air, misalnya air tanah, air limbah, air sungai, air laut
2) Lokasi atau titik pengambilan sampel, disebutkan lokasi yang pasti/jelas dimana sampel diambil
3) Parameter yang akan diperiksa
4) Cuaca saat pengambilan sampel
5) Tanggal dan waktu (jam) pengambilan sampel
6) Nama yang mengambil sampel

Frekuensi pengambilan sampel air tergantung pada beberapa faktor, yaitu perubahan beban pencemaran dan debit air, tujuan pemantauan kualitas air, dan kemampuan analisis.

Pada prinsipnya hampir semua parameter kimia air dapat dianalisa secara akurat di laboratorium. Tetapi hasil analisa tersebut akan tidak ada manfaatnya apabila cara pengambilan sampelair di lapangantidak sesuai dengan sifat dari beberapa parameter kimia air yang sangat sensitif terhadap kontak langsung dengan udara, maka pengambilan sampel pun harus dilakukan sedemikian rupa sehingga kontak air dengan udara dapat dihindari serta air dapat dibawa ke permukaan dan ketika sampai di laboratorium, tidak akan mengalami perubahan sifat (Anonimous, 1992).
g. **Teknik pengawetan sampel**

Metode pengawasan pada umumnya terbatas pada kontrol pH, penambahan zat kimia, pendinginan dan pembekuan. Parameter-parameter tertentu lebih banyak dipengaruhi oleh penyimpanan contoh sebelum dianalisa daripada yang lainnya. Beberapa jenis kation dapat hilang karena diserap oleh dinding wadah gelas seperti alumunium (Al), Kadmium (Kd), Krom (Cr), Tembaga (Cu), Besi (Fe), Timbal (Pb), Mangan (Mn), Perak (Ag) dan Seng (Zn). Sebaiknya untuk parameter-parameter diatas, contoh diambil secara terpisah dan ditampung dalam botol bersih serta diasamkan dengan HCl pekat atau H₂SO₄ pekat sampai pH 2,0 untuk mengurangi absorbsi pada dinding wadah. Parameter pH, temperatur dan gas terlarut harus segera diperiksa di lapangan karena parameter tersebut mudah sekali berubah dalam waktu singkat.
Gambar 25. Melakukan pengawetan sampel air

Air sampel yang diperoleh dari lokasi pengambilan sampel sebelum dilakukan pengukuran atau selama penyimpanan memerlukan penanganan seperti disajikan pada Tabel 15. Berikut disajikan rekomendasi penanganan air contoh (water sample) terutama menyangkut preservasi atau pengawetan, jenis wadah dan lamanya penyimpanan.

Tabel 16. Pengawet dan wadah yang diperlukan untuk pengawetan air sampel sesuai dengan parameter yang akan diukur.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Warna</td>
<td>500</td>
<td>P, G</td>
<td>didinginkan</td>
<td>48 jam / 48 jam</td>
</tr>
<tr>
<td>Daya Hantar Listrik</td>
<td>500</td>
<td>P, G</td>
<td>didinginkan</td>
<td>28 hari / 28 hari</td>
</tr>
<tr>
<td>Bau</td>
<td>500</td>
<td>G</td>
<td>dianalisa segera didinginkan</td>
<td>6 jam / NS</td>
</tr>
<tr>
<td>Rasa</td>
<td>500</td>
<td>G</td>
<td>dianalisa segera didinginkan</td>
<td>24 jam / NS</td>
</tr>
<tr>
<td>Suhu</td>
<td>–</td>
<td>P, G</td>
<td>dianalisa segera</td>
<td>tidak diijinkan disimpan</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Kekeruhan/Turbidity</td>
<td>–</td>
<td>P, G</td>
<td>dianalisa pada hari itu atau disimpan di tempat gelap s/d 24 jam, didinginkan</td>
<td>24 jam / 48 jam</td>
</tr>
<tr>
<td>Zat padat</td>
<td>–</td>
<td>P, G</td>
<td>didinginkan</td>
<td>7 hari / 2 – 7 hari</td>
</tr>
<tr>
<td>pH</td>
<td>–</td>
<td>P, G</td>
<td>dianalisa segera</td>
<td>tidak diijinkan disimpan</td>
</tr>
<tr>
<td>Karbon dioksida (CO₂)</td>
<td>100</td>
<td>P, G</td>
<td>dianalisa segera</td>
<td>2 jam / tidak diijinkan disimpan</td>
</tr>
<tr>
<td>Alkalinitas</td>
<td>200</td>
<td>P, G</td>
<td>didinginkan</td>
<td>24 jam / 14 hari</td>
</tr>
<tr>
<td>Asiditas</td>
<td>100</td>
<td>P,G(B)</td>
<td>didinginkan</td>
<td>24 Jam / 14 hari</td>
</tr>
<tr>
<td>Kesadahan</td>
<td>100</td>
<td>P, G</td>
<td>ditambah HNO₃</td>
<td>6 bulan / 6 bulan</td>
</tr>
<tr>
<td>Ammonia</td>
<td>500</td>
<td>P, G</td>
<td>dianalisa segera atau ditambah H₂SO₄ sampai pH < 2, didinginkan</td>
<td>7 hari / 28 hari</td>
</tr>
<tr>
<td>Nitrit, NO₂⁻</td>
<td>100</td>
<td>P, G</td>
<td>dianalisa segera atau didinginkan</td>
<td>none / 48 jam</td>
</tr>
<tr>
<td>Nitrat, NO₃⁻</td>
<td>100</td>
<td>P, G</td>
<td>dianalisa segera</td>
<td>48 jam / 48 jam (23 hari untuk contoh yang dibubuhi khlor)</td>
</tr>
<tr>
<td>Nitrat + Nitrit</td>
<td>200</td>
<td>P, G</td>
<td>ditambah H₂SO₄ sampai pH < 2, didinginkan</td>
<td>None / 28 hari</td>
</tr>
<tr>
<td>Kjedahl Nitrogen</td>
<td>500</td>
<td>P, G</td>
<td>didinginkan, ditambah H₂SO₄ sampai pH < 2, didinginkan</td>
<td>7 hari / 28 hari</td>
</tr>
<tr>
<td>Bromida</td>
<td>–</td>
<td>P, G</td>
<td>tidak diperlukan</td>
<td>28 hari / 6 bulan</td>
</tr>
<tr>
<td>Fluorida</td>
<td>300</td>
<td>P</td>
<td>tidak diperlukan</td>
<td>28 hari / 28 hari</td>
</tr>
<tr>
<td>Sisa Khor</td>
<td>500</td>
<td>P, G</td>
<td>dianalisa segera</td>
<td>0,5 jam / tidak diijinkan disimpan</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Sianida (CN⁻) total</td>
<td>500</td>
<td>P, G</td>
<td>didinginkan di tempat gelap, ditambah NaOH sampai pH > 12</td>
<td>24 jam / 14 hari : 24 jam jika ada Sulfida</td>
</tr>
<tr>
<td>Iodin</td>
<td>500</td>
<td>P, G</td>
<td>dianalisa segera</td>
<td>0,5 jam / NS</td>
</tr>
<tr>
<td>Sulfat</td>
<td>-</td>
<td>P, G</td>
<td>didinginkan</td>
<td>28 hari / 28 hari</td>
</tr>
<tr>
<td>Boron</td>
<td>100</td>
<td>P</td>
<td>tidak diperlukan</td>
<td>28 hari / 6 bulan</td>
</tr>
<tr>
<td>Bromida</td>
<td>-</td>
<td>P, G</td>
<td>tidak diperlukan</td>
<td>28 hari / 28 hari</td>
</tr>
<tr>
<td>Sulfida</td>
<td>100</td>
<td>P, G</td>
<td>didinginkan, ditambah 4 tetes asam asetat 2N per 100 ml ; ditambah NaOH sampai pH > 9</td>
<td></td>
</tr>
<tr>
<td>Salinitas</td>
<td>200</td>
<td>G disegel lilin</td>
<td>dianalisa segera atau disimpan pada tempat yang disegel lilin</td>
<td>6 bulan / NS</td>
</tr>
<tr>
<td>Silika</td>
<td>-</td>
<td>P</td>
<td>didinginkan tidak sampai beku</td>
<td>28 hari / 28 hari</td>
</tr>
<tr>
<td>Fosfat</td>
<td>100</td>
<td>G (A)</td>
<td>untuk fosfat terlarut, saring segera, dinginkan</td>
<td>48 jam / NS</td>
</tr>
<tr>
<td>Fenol</td>
<td>500</td>
<td>P, G</td>
<td>didinginkan , ditambah H₂SO₄ *) / 28 hari</td>
<td></td>
</tr>
<tr>
<td>Pesticida</td>
<td>-</td>
<td>G (S), TFE lined cap</td>
<td>didinginkan, jika ada sisa khlor tambah 100 mg/lNa₂S₂O₃</td>
<td>7 hari / 7 hari sampai diekstraksi 40 hari setelah ekstraksi</td>
</tr>
<tr>
<td>Ozone</td>
<td>1000</td>
<td>G</td>
<td>analisa segera</td>
<td>0,5 jam / NS</td>
</tr>
<tr>
<td>Minyak & Lemak</td>
<td>1000</td>
<td>G, mulut lebar</td>
<td>didinginkan, ditambah H₂SO₄ sampai pH < 2</td>
<td>28 hari / 28 hari</td>
</tr>
<tr>
<td>BOD</td>
<td>1000</td>
<td>P, G</td>
<td>didinginkan</td>
<td>6 jam / 48 jam</td>
</tr>
<tr>
<td>COD</td>
<td>100</td>
<td>P, G</td>
<td>dianalisa segera ; ditambah H₂SO₄ sampai pH < 2 ; didinginkan.</td>
<td>7 hari / 28 hari</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Oksigen terlarut (DO): Metode Elektrometri k Metode Winkler</td>
<td>300</td>
<td>G, Botol BOD</td>
<td>analisa segera, O2 diendapkan di tempat, tambah H2SO4 titrasi dapat ditunda</td>
<td>0,5 jam / tidak diijinkan disimpan titrasi dapat ditunda 8 jam setelah penambahan asam</td>
</tr>
<tr>
<td>Total organik Karbon (TOC)</td>
<td>100</td>
<td>G</td>
<td>dianalisa segera, atau didinginkan dan ditambah HCl sampai pH < 2</td>
<td>7 hari / 28 hari</td>
</tr>
<tr>
<td>Logam (umum)</td>
<td>-</td>
<td>P (A), G (A)</td>
<td>untuk logam terlarut segera disaring, ditambah HNO3 sampai pH < 2</td>
<td>6 bulan / 6 bulan</td>
</tr>
<tr>
<td>Khrom Heksavalen (Cr6+), dan Cu metode Kolorimetri</td>
<td>300</td>
<td>P (A), G (A)</td>
<td>didinginkan</td>
<td>24 jam / 24 jam</td>
</tr>
<tr>
<td>Raksa (Mercury) Hg</td>
<td>500</td>
<td>P (A), G (A)</td>
<td>ditambah HNO3 sampai pH < 2 ; didinginkan pada 4 °C</td>
<td></td>
</tr>
</tbody>
</table>
3. **Refleksi**

Isilah pernyataan berikut ini sebagai refleksi pembelajaran!

a. Dari hasil kegiatan pembelajaran apa saja yang telah anda peroleh dari aspek pengetahuan, keterampilan dan sikap?

b. Apakah anda merasakan manfaat dari pembelajaran tersebut, jika ya apa manfaat yang anda peroleh? jika tidak mengapa?
140

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Apa yang anda rencanakan untuk mengimplementasikan pengetahuan, keterampilan dan sikap dari apa yang telah anda pelajari?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Apa yang anda harapkan untuk pembelajaran berikutnya?</td>
</tr>
</tbody>
</table>

4. **Tugas**

Identifikasih beberapa parameter kualitas air yang dapat diukur langsung di lapangan serta parameter-parameter kualitas air yang harus dilakukan pengukuran sampel di laboratorium. Lakukan pengambilan sampel dan pengawetan sampel kualitas air dengan kelompok anda. Setelah anda melakukan kegiatan tersebut diskusikan dengan kelompok anda kemudian sampaikan di depan kelas.

5. **Tes Formatif**

1. Tujuan dilakukannya pengujian air adalah untuk...
 a. kepentingan umat manusia di bidang industry, pertanian, perikanan, air minum, dsb
 b. kebijakan pengelolaan air limbah
 c. standart baku mutu air minum
 d. kepentingan pemerintah dalam penanganan banjir
2 Sampel air yang merupakan campuran contoh-contoh sesaat yang diambil dari suatu tempat yang sama pada waktu yang berbeda adalah...
 a. Grap sample
 b. Composite sample
 c. Integrated sample
 d. Combined sample

3 Pertemuan dua sungai merupakan salah satu area yang dapat dijadikan titik sampling, namun memerlukan uji terlebih dahulu
 a. homogenitas
 b. heterogenitas
 c. oksigen terlarut
 d. suhu dan salinitas

4 Jumlah titik sampling yang dilakukan disungai dipengaruhi oleh...
 a. debit rata-rata tahunan
 b. klasifikasi sungai
 c. kedalaman sungai
 d. lebar sungai

5 Pada sungai dengan debit antara 5 – 150 m³/detik maka titik pengambilan sampel pada...
 a. jarak 1/3 dan 2/3 lebar sungai dengan 0,5 kedalaman sungai
 b. jarak 1/3 dan 2/3 lebar sungai dengan diatas permukaan dan di dasar sungai
 c. jarak ½ lebar sungai dengan 0,5 kedalaman sungai
 d. jarak ¼, ½ dan ¾ lebar sungai dengan 0,5 kedalaman sungai

6 Pengambilan sampel pada titik permukaan, lapisan termoklin (metalimnion), di atas lapisan hipolimnion, dan dasar danau/waduk
dilakukan pada waduk dengan kedalaman...

a. kurang dari 10 m
b. 10 – 30 m
c. 30 - 100 m
d. lebih dari 100 m

7 Persyaratan peralatan pengambilan sampel adalah kecuali...
 a. Mudah dicuci dari bekas contoh sebelumnya,
 b. Contoh mudah dipindahkan ke botol penampung tanpa ada sisa bahan tersuspensi di dalamnya,
 c. Alat yang digunakan tergantung dari ketersediaan di lokasi
 d. Mudah dan aman dibawa

8 Frekuensi pengambilan sampel untuk air danau dapat dilakukan...
 a. setiap bulan sekali
 b. setiap 2 bulan sekali
 c. setiap 3 bulan sekali
 d. setiap 6 bulan sekali

9 Memperlambat proses perubahan kimia dan biologis yang tidak terelakkan adalah fungsi dari...
 a. pengambilan sampel
 b. penanganan sampel
 c. pengawetan sampel
 d. pengukuran sampel

10 Selain dengan pendinginan pengawetan sampel air juga dapat dilakukan dengan penambahan...
 a. HCl pekat atau H₂SO₄ pekat
 b. NaOH pekat atau HCl pekat
c. H₂SO₄ pekat atau H₂O
c. HCl pekat atau H₂O

C. Penilaian

1. Penilaian Sikap

INSTRUMEN PENILAIAN PENGAMATAN SIKAP
DALAM PROSES PEMBELAJARAN

Petunjuk:
Berilah tanda cek (✓) pada kolom skor sesuai sikap yang ditampilkan oleh peserta didik, dengan kriteria sebagai berikut:

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuann ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek Pengamatan</th>
<th>Skor 1</th>
<th>Skor 2</th>
<th>Skor 3</th>
<th>Skor 4</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sebelum memulai pelajaran, berdoa sesuai agama yang dianut siswa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Interaksi siswa dalam konteks pembelajaran di kelas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kesungguhan siswa dalam melaksanakan praktek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ketelitian siswa selama mengerjakan praktek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kejujuran selama melaksanakan praktek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Disiplin selama melaksanakan praktek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tanggung jawab siswa mengerjakan praktek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kerjasama antar siswa dalam belajar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Menghargai pendapat teman dalam kelompok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Menghargai pendapat teman kelompok lain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Memiliki sikap santun selama pembelajaran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nilai Akhir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kualifikasi Nilai pada penilaian sikap

<table>
<thead>
<tr>
<th>Skor</th>
<th>Kualifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00 – 1,99</td>
<td>Kurang</td>
</tr>
<tr>
<td>2,00 – 2,99</td>
<td>Cukup</td>
</tr>
<tr>
<td>3,00 – 3,99</td>
<td>Baik</td>
</tr>
<tr>
<td>4,00</td>
<td>Sangat baik</td>
</tr>
</tbody>
</table>

\[
\text{NA} = \frac{\sum \text{skor}}{12}
\]

RUBIK PENILAIAN PENGAMATAN SIKAP
DALAM PROSES PEMBELAJARAN

<table>
<thead>
<tr>
<th>ASPEK</th>
<th>KRITERIA</th>
<th>SKOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Berdoa sesuai agama yang dianut siswa</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>B. Interaksi siswa dalam konteks pembelajaran</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>C. Ketelitian siswa selama mengerjakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>D. Kejujuran selama melaksanakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>E. Disiplin selama melaksanakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>F. Memiliki sikap santun selama pembelajaran</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>ASPEK</td>
<td>KRITERIA</td>
<td>SKOR</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>G. Tanggung jawab siswa mengerjakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>H. Kesungguhan dalam mengerjakan tugas</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>I. Kerjasama antar siswa dalam belajar</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>J. Menghargai pendapat teman dalam kelompok</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>K. Menghargai pendapat teman dalam kelompok</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>Nama Siswa</td>
<td>Skor Aktivitas Siswa</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspek Sikap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berdoa sebelum belajar</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DAFTAR NILAI SISWA ASPEK SIKAP DALAM PEMBELAJARAN PENILAIAN Diri

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

<table>
<thead>
<tr>
<th>NO</th>
<th>PERNYATAAN</th>
<th>YA</th>
<th>TIDAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Saya mampu menentukan titik sampling pada perairan yang mengalir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Saya mampu menentukan titik sampling pada perairan yang tergenang (waduk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Saya mampu menyiapkan peralatan dan wadah untuk pengambilan sampel air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Saya mampu mengambil sample air sesuai dengan kriteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Saya mampu menangani sampel air yang akan diuji</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Saya mampu mengawetkan sampel air dengan pendinginan dan pengasaman</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Penilaian Pengetahuan

a. Jelaskan berbagai macam contoh air!
b. Jelaskan tujuan dilakukannya pengambilan sampel air!
c. Jelaskan penentuan lokasi pengambilan sampel di sungai!
d. jelaskan persyaratan peralatan, wadah dan sarana pengambilan sampel air
e. jelaskan penanganan sampel air sebelum dibawa ke laboratorium!
3. Penilaian Keterampilan

INSTRUMEN PENILAIAN PENGAMATAN ASPEK KETERAMPILAN
DALAM PROSES PEMBELAJARAN

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

Petunjuk :
Berilah tanda cek (√) pada kolom skor sesuai sikap yang ditampilkan oleh peserta didik, dengan kriteria sebagai berikut :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek Pengamatan</th>
<th>Skor</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Membaca buku bacaan / sumber belajar lainnya sebelum pelajaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Memahami konsep 5M dalam pembelajaran pengambilan sampel kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mengaplikasikan kegiatan 5M yang dicantumkandalam pembelajaran pengambilan sampel kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Menentukan lokasi pengambilan sampel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Melakukan pengambilan sampel sesuai prosedur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Melakukan penanganan sampel sesuai prosedur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Melakukan pengawetan sampel sesuai prosedur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Menulis laporan praktek sesuai out line yang dianjurkan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Menulis laporan dengan memaparkan dan membahas data hasil praktek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan skor :
1 : tidak terampil, belum dapat melakukan sama sekali
2 : sedikit terampil, belum dapat melakukan tugas dengan baik
3 : cukup terampil, sudah mulai dapat melakukan tugas dengan baik
4 : terampil, sudah dapat melakukan tugas dengan baik
DAFTAR NILAI SISWA ASPEK KETERAMPILAN
TEKNIK NON TES BENTUK PENUGASAN PROYEK

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek yang dinilai</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Persiapan</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Pembuatan rencana kerja (baik = 3, kurang baik = 2, tidak baik = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persiapan alat dan bahan (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pelaksanaan</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Keterampilan menentukan lokasi sampel (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keterampilan mengambil sampel kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keterampilan menangani sampel kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keterampilan mengawetkan sampel kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pelaporan Hasil</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sistematika laporan (baik = 3, kurang baik = 2, tidak baik = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penggunaan bahasa (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penulisan ejaan (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tampilan (menarik = 3, kurang menarik = 2, tidak menari = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skor maksimal</td>
<td>30</td>
</tr>
</tbody>
</table>

Nilai projek = (skor perolehan : skor maksimal) x 100
KEGIATAN PEMBELAJARAN 3. PENGUKURAN KUALITAS AIR

A. Deskripsi

Pengukuran kualitas air merupakan materi yang saling berhubungan dengan materi-materi lain pada mata pelajaran kualitas air. pengukuran kualitas air ini membahas tentang:

1. identifikasi alat dan bahan pengukuran kualitas air
2. prinsip kerja alat ukur/ metode pengukuran kualitas air
3. metode pengukuran kualitas air
4. prosedur pengukuran kualitas air
5. perhitungan hasil pengukuran

Pada materi pengukuran kualitas air untuk mempermudah pemahaman maka akan dibahas untuk tiap-tiap parameter.

B. Kegiatan Belajar

1. Tujuan Pembelajaran

Peserta didik yang telah mempelajari materi ini diharapkan mampu:

a. mengukur parameter fisika kualitas air
b. mengukur parameter kimia kualitas air
c. mengukur parameter biologi kualitas air

2. Uraian Materi

Beberapa parameter kualitas air dapat diamati langsung saat melakukan sampling di lapangan, hal ini telah dipermudah dengan telah banyaknya perlengkapan kualitas air digital dan portable yang dapat dibawa langsung ke
lapangan, bahkan saat ini juga telah banyak tersedia berbagai kit analisa kualitas air sehingga hal ini dapat mempermudah pengukuran kualitas air.

Pengamatan dan pengukuran kualitas air langsung di lapangan mampu mendapatkan data yang lebih akurat tentang nilai kualitas air yang diperoleh sehingga analisa yang nantinya akan dilakukan berhubungan dengan kehidupan ikan yang dibudidayakan akan lebih tepat. Namun ada juga beberapa kualitas air yang tidak dapat diukur langsung di lapangan, hal ini berhubungan dengan perlakuan, metode pengukuran kualitas air yang akan diamati, waktu pengamatan, hal ini biasanya terjadi pada pengukuran parameter kimia air atau biologi.

a. Persiapan alat dan bahan pengukuran kualitas air

Berbagai aspek parameter kualitas air untuk budidaya perikanan memiliki standart atau nilai kisaran yang masih dapat mendukung untuk kehidupan dan perkembangan makhluk hidup yang dibudidayakan, beserta peralatan pengukurannya dapat dilihat pada Tabel 17.

Tabel 17. Parameter kualitas air untuk budidaya dan peralatan pengukuran yang dapat digunakan.

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Peralatan Pengukuran</th>
<th>Gambar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Fisika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Intensitas cahaya</td>
<td>Lux meter</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parameter</td>
<td>Peralatan Pengukuran</td>
<td>Gambar</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>Suhu</td>
<td>termometer</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kecerahan</td>
<td>Secchi disk</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kekeruhan</td>
<td>turbidimeter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TDS</td>
<td>TDS meter</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parameter</td>
<td>Peralatan Pengukuran</td>
<td>Gambar</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td>TSS</td>
<td>TSS meter</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Daya hantar listrik</td>
<td>Conductivity meter</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Salinitas</td>
<td>Salinometer/refractometer</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Debit air</td>
<td>Current meter</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parameter</td>
<td>Peralatan Pengukuran</td>
<td>Gambar</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>10</td>
<td>Pasang surut</td>
<td>Tiang pancang berskala</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Kecepatan arus</td>
<td>Current meter</td>
<td></td>
</tr>
</tbody>
</table>

Parameter Kimia

<p>| 12 | Oksigen terlarut | DO meter/titrasi | |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Peralatan Pengukuran</th>
<th>Gambar</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Karbondioksida bebas</td>
<td>CO$_2$ meter/titrasi</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Amonia</td>
<td>Spektrofotometer</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nitrat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Nitrit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fosfat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>pH (derajat keasaman)</td>
<td>pH meter dan kertas pH (pH indikator)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parameter</td>
<td>Peralatan Pengukuran</td>
<td>Gambar</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>19</td>
<td>Alkalinitas</td>
<td>titrasi</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Kesadahan</td>
<td>dH meter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parameter Biologi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Kelimpahan dan keanekaragaman plankton</td>
<td>Plankton net dan haemocyto meter/sad wick rafter cell</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parameter</td>
<td>Peralatan Pengukuran</td>
<td>Gambar</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>22</td>
<td>Kelimpahan dan keanekaragaman bentos</td>
<td>Eidmen grab dan Peterson grab untuk perairan tergenang Surber untuk air mengalir dengan substrat pasir berbatu Ayakan untuk memisahkan sedimen dengan benthos</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kelimpahan dan keanekaragaman perifiton</td>
<td>Metode kerik</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Effendi (2000)

Parameter kimia air tidak hanya dapat diukur dengan menggunakan peralatan digital, namun ada juga metode pengukuran kualitas air dengan menggunakan metode titrasi atau pewarnaan. Berikut di bawah ini peralatan yang digunakan dalam pengukuran parameter kualitas air dengan cara titrasi dapat dilihat pada Tabel 17.
<table>
<thead>
<tr>
<th>No</th>
<th>Nama alat</th>
<th>Kegunaan</th>
<th>Gambar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Botol BOD/ Botol sampel</td>
<td>Menampung air sampel</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pipet volumetrik</td>
<td>Mengukur volume air dengan volume kecil</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pipet tetes</td>
<td>Meneteskan titran/ indicator/sampel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bola hisap</td>
<td>Mengambil sampel air dengan pipet hisap</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Nama alat</td>
<td>Kegunaan</td>
<td>Gambar</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>5</td>
<td>Statif</td>
<td>Menahan buret</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Buret</td>
<td>Tempat menampung titran pada saat titrasi</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Erlemeyer</td>
<td>Untuk menyimpan dan Memanaskan larutan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menampung filtrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hasil penyaringan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menampung titran</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hasil proses titrasi</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Beaker glass</td>
<td>Untuk mengukur volume yang tidak memerlukan ketelitian tinggi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menampung zat kimia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Memanaskan cairan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media pemanasan cairan</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gelas ukur</td>
<td>Mengatur dan mengukur volume larutan yang tidak memerlukan ketelitian tinggi dalam jumlah tertentu</td>
<td></td>
</tr>
</tbody>
</table>
b. Pengukuran parameter fisika

1) Warna air

Pada penentuan warna sejati, bahan-bahan tersuspensi yang dapat menyebabkan kekeruhan dipisahkan terlebih dahulu. Filtrasi (penyaringan) bertujuan menghilangkan materi tersuspensi dalam air tanpa mengurangi keaslian warna air. Sentrifugasi mencegah interaksi warna dengan material penyaring. Warna sejati tidak dipengaruhi oleh kekeruhan.

Warna perairan dapat dipakai (tidak selamanya) sebagai parameter apakah suatu perairan sudah tercemar atau belum. Warna perairan dapat pula dipengaruhi oleh biota yang ada didalamnya, misalnya algae, plankton dan tumbuhan air. Air sungai pada umumnya berwarna bening sampai kecoklatan, hal ini karena dipengaruhi oleh adanya pencucian badan sungai itu sendiri dan kadungan suspensi didalamnya. Warna perairan diukur dengan metode organoleptik, pengamatan dengan kasat mata atau dengan Visual Comparation Method yaitu dengan cara membandingkan air sampel dengan warna standart yang dibuat dari unsur platinum (Pt) dan cobalt (Co). satuan dari warna adalah unit PtCo. untuk kepentingan air minum sebaiknya memiliki nilai warna 5 – 15 PtCo. air sampel yang berasal dari danau dengan warna kuning kecoklatan memiliki nilai warna 200 – 300 PtCo. Semakin dalam kolom air maka akan menunjukkan nilai warna yang semakin tinggi, hal ini disebabkan karena adanya bahan organik yang terlarut di dasar perairan.
2) **Intensitas Cahaya**

Alat yang digunakan adalah Lux meter. Dimana alat tersebut disimpan di atas permukaan air laut kemudian dicatat nilai yang ada pada Lux meter.

3) **Suhu**

Cara Kerja :

- Dicatat suhu udara sekitar
- Untuk air permukaan : Termometer dicelupkan ke dalam perairan, ditunggu beberapa menit. Diangkat dan dicatat suhunya.
- Untuk air di bawah : Sampel diambil dalam botol, kemudian termometer dicelupkan ke dalam air tersebut, ditunggu beberapa menit. Diangkat dan dicatat suhunya.

4) **Kekeruhan**

Untuk mengukur parameter kekeruhan dengan menggunakan turbidimeter dilakukan dengan cara:
Botol yang berisi air sampel diaduk dengan cara dibolak-balik agar tidak terjadi endapan.

Air sampel dipindahkan ke dalam tabung reaksi sebanyak 20-30 ml

Tabung reaksi dimasukkan ke dalam turbidimeter kemudian hasilnya dicatat.

Turbidimeter merupakan salah satu alat yang berfungsi untuk mengukur tingkat kekeruhan air. Turbidimeter merupakan alat yang memiliki sifat optik akibat dipersi sinar dan dapat dinyatakan sebagai perbandingan cahaya yang dipantulkan terhadap cahaya yang tiba. Intesitas cahaya yang dipantulkan oleh suatu suspensi adalah fungsi konsentrasi jika kondisi-kondisi lainnya konstan. Ada 2 jenis Turbidimeter umum yang sering dipakai sekarang yaitu:

- **Bech top** dan portabel digunakan untuk menganalisa sampel ambil atas unit Bech biasanya digunakan sebagai laboratorium stasioner instrumen dan tidak dimaksudkan untuk menjadi portabel.
- On-line instrumen biasanya dipasang di lapangan dan terus-menerus menganalisa aliran sampel tumpah *off* dari proses unit sampling.

Penggunaan alat turbidimetri ini yaitu menyimpan sampel atau standart pada botol kecil/botol sampel. Sebelum alat digunakan terlebih dahulu diset, dimana angka yang tertera harus 0 atau dalam keadaan netral, kemudian lakukan pengukuran dengan menyesuaikan nilai pengukuran dengan cara memutar tombol pengatur hingga nilai yang tertera pada layar pada turbidimeter sesuai dengan nilai standart. Setelah itu sampel dimasukkan pada tempat pengukuran sampel yang ada pada turbidimeter, hasilnya dapat langsung dibaca skala pengukuran kekeruhan tertera pada layar dengan jelas. Akan tetapi pengukuran sampel harus dilakukan sebanyak 3 kali dengan menekan tombol
pengulangan pengukuran untuk setiap pengulangan agar pengukuran tepat atau valid, dan hasilnya langsung dirata-ratakan.

Dasar dari analisis turbidimetri adalah pengukuran intensitas cahaya yang ditranmisikan sebagai fungsi dari konsentrasi fase terdispersi, bilamana cahaya dilewatkan melalui suspensi maka sebagian dari energi radiasi yang jatuh dihamburkan dengan penyerapan, pemantulan, dan sisanya akan ditranmisikan (Khokar, 2003).

Pada alat turbidimeter yang dipraktikan aplikasinya ini cahaya masuk melalui sample air kemudian sebagian diserap dan sebagian diteruskan, cahaya yang diserap itulah yang merupakan tingkat kekeruhan. Maka jika semakin banyak cahaya yang diserap maka semakin keruh cairan tersebut. Menurut WHO (World Health Organization). Menetapkan bahwa kekeruhan air minum tidak boleh lebih dari 5 NTU, dan idealnya harus di bawah 1 NTU. Berdasarkan teori tersebut dapat dikatakan bahwa semua sampel yang diuji telah memenuhi kelayakan untuk dikonsumsi sebab tingkat kekeruhan (turbiditans) berada di bawah 5 NTU.

Gambar 26. Turbidimetri
5) Salinitas

Adapun prinsip kerja dari refractometer dapat digambarkan sebagai berikut:

- Dari gambar dibawah ini terdapat 3 bagian yaitu: Sample, Prisma dan Papan Skala. Refractive index prisma jauh lebih besar dibandingkan dengan sample.
- Jika sample merupakan larutan dengan konsentrasi rendah, maka sudut refraksi akan lebar dikarenakan perbedaan refraksi dari prisma dan sample besar. Maka pada papan skala sinar “a” akan jatuh pada skala rendah.
- Jika sample merupakan larutan pekat/konsentrasi tinggi, maka sudut refraksi akan kecil karena perbedaan refraksi prisma dan sample kecil. Pada gambar terlihat sinar “b” jatuh pada skala besar.
Gambar 27. Refraksi cahaya

Konsentrasi bahan terlarut sering dinyatakan dalam satuan Brix(%) yaitu merupakan pronsentasi dari bahan terlarut dalam sample (larutan air). Kadar bahan terlarut merupakan total dari semua bahan dalam air, termasuk gula, garam, protein, asam dsb. Pada dasarnya Brix(%) dinyatakan sebagai jumlah gram dari cane sugar yang terdapat dalam larutan 100g cane sugar. Jadi pada saat mengukur larutan gula, Brix(%) harus benar-benar tepat sesuai dengan konsentrasinya.

Salinitas diukur dengan alat refraktometer dengan cara:

- Refraktometer yang akan digunakan dikalibrasi terlebih dahulu dengan cara meneteskan aquades ke kaca depan refraktometer.
- Amati kadar salinitas dari lensa belakang hingga menunjukkan angka 0 dengan sambil memutar bagian kalibrasinya dengan menggunakan obeng kecil di bagian atas refraktometer.
o Bersihkan kaca depan refraktometer dengan menggunakan tisu hingga benar-benar bersih sebelum digunakan untuk mengamati kadar salinitas sampel.

o Air sampel diambil secukupnya, lalu ditekstakan pada kaca depan refraktometer,

o Kemudian diamati melalui lensa belakang,

o Penunjukan nilai salinitas pada alat tersebut dicatat.

Gambar 2 Penggunaan hand refractometer

6) Kecerahan

Salah satu cara untuk mengukur kecerahan air dilakukan dengan menggunakan keping Secchi (Secchi-disk), yaitu sebuah keping bulat dengan garis tengah 20 cm yang terbuat dari seng dan dicat putih atau
hitam-putih yang diberi pemberat. Alat tersebut diturunkan ke dalam air sampai tidak tampak, kedalamannya diukur, kemudian diturunkan lebih dalam lagi.

Selanjutnya keping tersebut diangkat kembali dan apabila keping hampir tampak lagi, maka kedalamannya diukur lagi. Harga rata-rata kedua pengukuran tersebut diambil sebagai kecerahan keping secchi. (*Secchi disc visibility*) dengan satuan sentimeter

![Gambar 28. Pengukuran kecerahan (a) *secchi disk* dengan skala pengukuran dan (b) penggunaan *secchi disk*](image)

7) Kedalaman

8) Kecepatan Arus

Pergerakan air atau arus air diperlukan untuk ketersediaannya makanan bagi jasad renik dan oksigen. Selain itu untuk menghindari karang dari proses pengendapan. Adanya adukan air yang disebabkan oleh adanya pergerakan air akan menghasilkan oksigen di dalam perairan tersebut. Pada umumnya bila suatu perairan mempunyai arus yang cukup deras maka kadar oksigen yang terlarut juga akan semakin tinggi.

Alat :

a) Current meter atau benda yang terapung (bola pingpong)
b) Roll meter
c) Stop watch
d) Tali rafia
e) Ranting kayu

Cara Kerja :

Setiap 100 meter perairan tersebut diberi tanda dengan ranting kayu searah aliran air.

a) Bola pingpong yang telah diikat dengan tali rafia diletakkan di atas permukaan air berbarengan dengan dijalankaninya stop watch.
b) Kecepatan gerakan bola tiap 100 meter dicatat.
c) Percobaan diulangi hingga beberapa kali dan dirata-rata.

Perhitungan :

\[
\text{Kecepatan arus} = \frac{\text{Jarak yang ditempuh}}{\text{Waktu yang diperlukan}} = \ldots \text{meter/detik}
\]
9) Debit air

Debit air adalah volume aliran air per satuan waktu. Debit air dipengaruhi oleh luas penampang perairan dan kecepatan arus.

Alat:

a) Roll meter
b) Bandul logam
c) Bola pingpong

Cara Kerja:

a) Diukur lebar dan panjang perairan, lebar dan panjang perairan tersebut dibagi rata untuk beberapa titik.
b) Kemudian pada tiap titik diukur kedalamannya dengan bandul logam untuk kemudian dibuat gambar penampang perairan dan diukur luas perairan tersebut \((A \ m^2)\).
c) Dihitung juga kecepatan arus air dengan menggunakan bola pingpong.

Perhitungan: \(Q = A \times V\)
\(A = \) luas penampang \((luas \times \text{dalam})\)
\(V = \) kecepatan arus

10) Padatan Tersuspensi Total dan Padatan Terlarut Total (TSS dan TDS)

Padatan tersuspensi total atau *Total Suspended Solid* (TSS) adalah bahan-bahan tersusupensi dan tidak terlarut dalam air, bahan-bahan ini tersaring pada kertas saring Millipore dengan ukuran pori-pori 0,45 \(\mu\)m. Sedangkan Padatan terlarut total adalah bahan-bahan terlarut yang tidak tersaring dengan kertas saring Millipore dengan ukuran pori-pori 0,45 \(\mu\)m. Cara pengukuran TSS dilakukan dengan gravimetric yang terdiri dari kegiatan penyaringan, penguapan dan penimbangan.
biasanya pengukurannya digabung dengan pengukuran Padatan terlarut total atau *Total Dissolved Solid* (TDS).

Alat dan Bahan :

a) Kertas saring/Filter Millipore dengan porositas 0,45 µm
b) Vacum pump
c) Timbangan
d) Cawan porselin
e) Oven
f) Desikator
g) 500 mL sampel air
h) Gelas piala, gelas ukur dan corong

Cara Kerja Pengukuran TSS:

a) Siapkan filter dan vacuum pump. saring 2 x 20 ml akuades, biarkan penyaringan berlanjut sampai 2 – 3 menit untuk mengisap kelebihan air
b) keringkan kertas saring dalam oven selama 1 jam pada temperature 103 – 105 °C, diinginkan dalam desikator, lalu timbang (B gr)
c) ambil 100 ml air sampel dengan kertas ukur, aduk, kemudian saring dengan menggunakan kertas saring (filter) yang telah ditimbang pada prosedur no 2
d) keringkan filter dan residu dalam oven 103 – 105 °C selama paling sedikit 1 jam, dinginkan dalam desikator, timbang (A gr)

Perhitungan :

\[
TSS = \frac{1000 \ (A - B)}{ml \ sampel} = \ldots \text{mg/liter}
\]

A : berat (mg) filter dan residu
B : berat (mg) filter
Cara Kerja Pengukuran TDS:

a) siapkan filter (Millipore dengan porosity 0,45 µm atau yang setara) rendam dalam aquades selama 24 jam dan biarkan kering
b) panaskan mangkuk porselen bersih pada tanur suhu 550 °C atau oven 103 – 105 °C selama 30 menit
c) dinginkan dalam desikator dan timbang (D mg)
d) saring air sampel 100 ml dengan menggunakan vacuum pump, tuang air tersaring ke dalam mangkuk porselen
e) uapkan mangkuk tersebut di atas hot plate hingga kadar air berkurang lalu keringkan pada oven 105 °C selama 1 jam
f) dinginkan mangkuk porselen dan residu dalam desikator kemudian timbang (R mg)

Perhitungan:

\[
TDS = \frac{1000 (R - D)}{ml \ sarpel} \text{...} mg/liter
\]

R : berat (mg) mangkuk dan residu
D : berat (mg) mangkuk

Gambar 29. Pengukuran kualitas air di lapangan/lokasi
11) Pasang surut

Pengukuran pasang surut relative mudah, karena cukup dengan pengamatan papan skala yang telah dipasang di bibir pantai atau batu karang yang ada di tepi pantai. Pada prinsipnya parameter ini untuk mengukur tinggi rendahnya air laut per satuan waktu dengan menggunakan papan. Pengamatan pasang surut air laut dilakukan setiap 1 jam sekali selama minimal 24 jam

Alat :

a) Papan diberi tanda/ukuran seperti meteran

b) Tali

c) Teropong / Binokuler

d) Senter

Cara Kerja :

a) Papan dipasang kuat pada sebuah batu karang.

b) Amati kenaikan dan penurunan ketinggian air laut dengan menggunakan teropong atau bantuan senter

c) Pendataan dilakukan setiap satu jam sekali dan dicatat angka tinggi air pada papan palem.

d) Pengamatan dilakukan sehari semalam untuk kemudian dibuat grafik pasang surutnya.
c. Pengukuran parameter kimia

1) pH air

pH atau derajat keasaman digunakan untuk menyatakan tingkat keasaman (atau kebasan yang dimiliki oleh suatu larutan. Yang dimaksudkan "keasaman" di sini adalah konsentrasi ion hidrogen(H^+) dalam pelarut air. Nilai pH berkisar dari 0 hingga 14. Suatu larutan dikatakan netral apabila memiliki nilai pH=7. Nilai pH>7 menunjukkan larutan memiliki sifat basa, sedangkan nilai pH<7 menunjukkan keasaman. Nilai pH 7 dikatakan netral karena pada air murni ion H^+ terlarut dan ion OH^- terlarut (sebagai tanda kebasan) berada pada jumlah yang sama, yaitu 10^-7 pada kesetimbangan. Penambahan senyawa ion H^+ terlarut dari suatu asam akan mendesak kesetimbangan ke kiri (ion OH^- akan diikat oleh H^+ membentuk air). Akibatnya terjadi kelebihan ion hidrogen dan meningkatkan konsentrasi.
Pengukuran senyawa asam dan basa dapat dilakukan menggunakan kertas lakmus, indikator asam basa \((pH \text{ paper})\) dan pH meter.

a) **Kertas lakmus**

Ada dua macam kertas lakmus yang biasa digunakan untuk mengenali senyawa asam atau basa, yaitu kertas lakmus merah dan kertas lakmus biru.

Gambar 30. Kertas lakmus

Tabel 19. Perubahan warna kertas lakmus

<table>
<thead>
<tr>
<th>Larutan</th>
<th>Kertas Lakmus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lakmus merah</td>
</tr>
<tr>
<td>Asam</td>
<td>Tetap merah</td>
</tr>
<tr>
<td>Netral</td>
<td>Tetap merah</td>
</tr>
<tr>
<td>Basa</td>
<td>Berubah menjadi biru</td>
</tr>
</tbody>
</table>
Dari tabel di atas dapat disimpulkan bahwa larutan asam akan mengubah warna kertas lakmus biru menjadi merah, larutan netral tidak mengubah warna pada kertas lakmus, dan larutan basa dapat mengubah kertas lakmus merah menjadi biru.

b) **Indikator Asam Basa**

Indikator asam basa adalah suatu zat yang memberikan warna berbeda pada larutan asam dan larutan basa. Dengan adanya perbedaan warna tersebut, indikator dapat digunakan untuk mengetahui apakah suatu zat bersifat asam atau basa. Perhatikanlah warna indikator pada larutan asam atau basa berikut ini.

Tabel 20. Beberapa zat indikator Asam Basa

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Warna setelah ditambah indikator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Larutan asam</td>
</tr>
<tr>
<td>Fenolftalein</td>
<td>Tidak berwarna</td>
</tr>
<tr>
<td>Bromtimol</td>
<td>Kuning</td>
</tr>
<tr>
<td>Metil merah</td>
<td>Merah</td>
</tr>
<tr>
<td>Metal jingga</td>
<td>Merah</td>
</tr>
</tbody>
</table>

Indikator yang dapat digunakan untuk mengenal sifat asam atau basa suatu larutan serta menentukan harga pH dapat digunakan indikator universal. Berikut cara penggunaan indikator universal dalam menentukan pH suatu larutan.
Gambar 31. Pengukuran sampel dengan pH paper (a) gambar indikator universal, (b) Indikator universal digunakan dengan cara mencelupkan indikator universal sampai batas warna ke dalam larutan yang akan ditentukan pH nya, akan terlihat perubahan warna pada kertas indikator, (c) kemudian cocokkan perubahan warna dengan warna indikator pada kotak. Dan dapat ditentukan pH larutan.

c) pH Meter

pH meter adalah suatu alat yang dapat digunakan untuk mengukur pH suatu larutan. Elektroda pada pH meter dicelupkan pada larutan yang akan diuji pH nya. pH meter akan menunjukkan pH larutan tersebut secara otomatis.

Prinsip Kerja pH Meter

Pada prinsipnya pengukuran suatu pH adalah didasarkan pada potensial elektro kimia yang terjadi antara larutan yang terdapat di dalam elektroda gelas yang telah diketahui dengan larutan yang terdapat di luar elektroda gelas yang tidak diketahui. Hal ini dikarenakan lapisan tipis dari gelembung kaca akan berinteraksi dengan ion hidrogen yang ukurannya relatif kecil dan aktif. Elektroda gelas tersebut akan mengukur potensial elektrokimia dari ion hidrogen atau diistilahkan dengan potential of hidrogen. Untuk melengkapi sirkuit elektrik dibutuhkan suatu elektroda
pembanding. Sebagai catatan, alat tersebut tidak mengukur arus tetapi hanya mengukur tegangan. Skema elektroda pH meter akan mengukur potensial listrik antara Merkuri Klorid (HgCl) pada elektroda pembanding dan potassium chloride (KCl) yang merupakan larutan di dalam gelas elektroda serta potensial antara larutan dan elektroda perak. Tetapi potensial antara sampel yang tidak diketahui dengan elektroda gelas dapat berubah tergantung sampelnya. Oleh karena itu, perlu dilakukan kalibrasi dengan menggunakan larutan yang equivalent yang lainnya untuk menetapkan nilai pH.

Elektroda pembanding calomel terdiri dari tabung gelas yang berisi potassium klorid (KCl) yang merupakan elektrolit yang berinteraksi dengan HgCl diujung larutan KCl. Tabung gelas ini mudah pecah sehingga untuk menghubungkannya digunakan keramik berpori atau bahan sejenisnya. Elektroda semacam ini tidak mudah terkontaminasi oleh logam dan unsure natrium. Elektroda gelas terdiri dari tabung kaca yang kokoh dan tersambung dengan gelembung kaca yang tipis. Di dalamnya terdapat larutan KCl yang buffer ph 7. Elektroda perak yang ujungnya merupakan perak kloride (AgCl\textsubscript{2}) dihubungkan ke dalam larutan tersebut. Untuk meminimalisir pengaruh elektrik yang tidak diinginkan, alat tersebut dilindungi oleh suatu lapisan kertas pelindung yang biasanya terdapat di bagian dalam elektroda gelas. Pada kebanyakan pH meter modern sudah dilengkapi dengan thermistor temperature, yakni suatu alat untuk mengoreksi pengaruh temperature. Antara elektroda pembanding dengan elektroda gelas sudah disusun dalam satu kesatuan.
Pemeliharaan pH Meter

pH meter harus dirawat secara berkala untuk menjaga umur pakai dari alat tersebut. Pemeliharaannya meliputi:

- Penggantian batere dilakukan jika pada layer muncul tulisan *low battery*
- Pembersihan elektroda bisa dilakukan berkala setiap minimal 1 minggu sekali. Pembersihannya menggunakan larutan HCl 0.1 N (encer) dengan cara direndam selama 30 menit kemudian dibersihkan dengan air DI.
- Ketika tidak dipakai, elektroda utama bagian gelembung gelasnya harus selalu berada pada keadaan lembab. Oleh karena itu, penyimpanan elektroda disarankan selalu direndam dengan menggunakan air DA. Penyimpanan pada posisi kering akan menyebabkan membran gelas yang terdapat pada gelembung elektroda akan mudah rusak dan pembacaannya tidak akurat.
- Ketika disimpan, pH meter tidak boleh berada pada suhu ruangan yang panas karena akan menyebabkan sensor suhu pada alat cepat rusak.

2) Oksigen terlarut (DO)

Oksigen terlarut adalah jumlah mg/l gas oksigen yang terlarut dalam air. oksigen terlarut dalam air dapat berasal dari proses fotosintesis oleh fitoplankton dan tanaman air atau dari difusi udara. kadar oksigen terlarut dapat ditentukan dengan titrasi maupun alat ukur elektronik DO meter.

a) Metode Titrasi dengan cara Winkler

Cara winkler yang didasarkan pada dua reaksi oksidasi – reduksi digunakan secara meluas dan merupakan cara standar dalam
penentuan oksigen terlarut. Cara ini berdasarkan pada kenyataan bahwa natrium oksida bereaksi dengan mangan sulfate, menghasilkan endapan putih dan mangan hidroksida.

\[
\text{MnSO}_4 + 2\text{NaOH} \rightarrow \text{Mn(OH)}_2 + \text{Na}_2\text{SO}_4
\]

Dengan adanya oksigen dalam larutan yang sangat basa, mangan hidroksida putih dioksidi menjadi mangan oksihidrat (coklat). Jadi jumlah oksigen yang kira-kira ada dapat diperkirakan dari intensitas warna coklat dari endapan. Dalam media yang sangat asam, ion-ion mangan dibebaskan dan bereaksi dengan ion-ion yod bebas dari kalium yodida membentuk yod bebas.

Jumlah yod bebas ekuivalen dengan jumlah oksigen yang ada dalam sampel. Jumlah yod dapat ditentukan melalui titrasi dengan natrium tiosulfat.

Pereaksi

(1) **Larutan Mangan Sulfat** (MnSO_4.4H_2O) larutkan 48 gram atau 40 gram MnSO_4.2H_2O dalam sedikit air suling. Buatlah menjadi 100 ml air suling. Mangan klorida dapat digunakan selain mangan sulfate Larutan mangan klorida dapat disiapkan dengan melarutkan 100 gram kristal mangan klorida tetrahidrat murni dalam 200 ml air suling.

(2) **Yodida Alkali (Pereaksi Winkler)**. Larutkan 50 gram NaOH dan 13,5 gram NaI atau 15 gram KI dalam 100 air suling.

(3) **Asam Sulfat Pekat**

(4) **Larutan Baku Natrium Tiosulfat** (Na_2S_2O_3.5H_2O) 0,1 N. Larutkan 24,83 gram natrium tiosulfat dalam sedikit air suling, masukkan dalam labu takar 1 liter dan tambahkan air suling sampai tanda batas. Tambahkan kedalam larutan tiosulfat 5 ml kloroform untuk mencegah kerusakan larutan.
(5) **Penitrasi (Na$_2$S$_2$O$_3$) 1/80 N (0,0125 N).** Encerkan dari larutan induk tiosulfat 12,5 ml larutan baku menjadi 1 liter dengan air suling.

(6) **Larutan Kanji.** Encerkan 30 ml larutan KOH 20 % menjadi 400 ml dengan air suling. Tambahkan 2 gram kanji didalamnya. Aduk sampai larutan menjadi hamper bening. Diamkan larutan selama 1 jam. Secara bertahap tambahkan asam klorida. Periksalah pH sesering mungkin sampai larutan menjadi netral. Tambahkan 1 ml asam asetat glacial.

Prosedur pengukuran oksigen terlarut dengan metode Titrasi (Winkler)

Alat:
1. Botol Winkler
2. Pipet tetes
3. Perangkat titrasi
4. Pipet volume

Bahan:
1. Air sampel
2. Iodida alkali (perekasi Winkler)
3. H$_2$SO$_4$ pekat
4. Larutan Mangan sulfat/ MnSO$_4$ 48 %
5. Natrium tiosulfat 0,025 N
6. Indikator amylum 1 %

Cara Kerja:
1. Ditambahkan kedalamnya 1 mL MnSO$_4$ dan 1 mL reagen Winkler, lalu dikocok dan ditunggu hingga terbentuk endapan.
(2) Ditambahkan 2 mL H_2SO_4 pekat, dikocok hingga endapan larut.

(3) Diambil 50,0 mL sampel tersebut, dititrasi dengan larutan Natrium tiosulfat 0,025 N sampai berwarna kuning muda pucat.

(4) Ditambahkan inikator amilum (biru).

(5) Dititrasi kembali dengan larutan Natrium tiosulfat, dari biru sampai menjadi bening.

(6) Dicatat berapa mL Natrium tiosulfat yang dipakai.

Perhitungan:

$$\text{Kadar O}_2 \ (mg/l) = 8000 \times \text{mL Na}_2\text{S}_2\text{O}_3 \times N \ \text{Na}_2\text{S}_2\text{O}_3 \ \ \ \text{mL sampel}$$

Gambar 32. Pengukuran kadar oksigen terlarut dengan cara titrasi

b) **Pengukuran oksigen terlarut dengan menggunakan DO meter**

Prinsip kerja dari alat DO meter ini adalah menggunakan elektroda atau probe oksigen yang terdiri dari katoda dan anoda yang
direndam dalam larutan elektrolit. Pada alat DO meter, biasanya menggunakan katoda perak (Ag) dan anoda timbal (Pb). Secara keseluruhan, elektroda ini dilapisi dengan membran plastik yang bersifat semi permeable terhadap oksigen. Reaksi kimia yang akan terjadi pada elektroda tersebut adalah:
Katoda : \[O_2 + 2 \text{H}_2\text{O} + 4\text{e} \rightarrow 4\text{HO}^- \]
Anoda : \[\text{Pb} + 2\text{HO}^- \rightarrow \text{PbO} + \text{H}_2\text{O} + 2\text{e} \]

Aliran reaksi yang terjadi tersebut tergantung dari aliran oksigen pada katoda. Difusi oksigen dari sampel ke elektroda berbanding lurus terhadap konsentrasi oksigen terlarut. Sampel yang digunakan adalah air suling atau aquadest.

Pengukuran kadar oksigen terlarut dengan menggunakan DO meter relative lebih mudah dibandingkan dengan metode titrasi. pengukuran dengan cara memasukkan ujung electrode ke dalam sampel air yang telah disiapkan. DO meter umumnya bersifat portable sehingga pengukuran dapat langsung dilakukan di lapangan. untuk menjaga ketepatan pengukuran, setiap jangka waktu tertentu alat perlu dikalibrasi dengan membandingkan hasil pengukuran alat terhadap hasil pengukuran dengan metode titrasi winkler terhadap air contoh yang sama. alat juga harus dikalibrasi terhadap temperatur dan tekanan udara (lokasi ketinggian) setempat, alat juga perlu diset pada temperatur dan salinitas air yang bersangkutan pada saat pengukuran.
3) **BOD (Biochemical Oxygen Demand)**

BOD adalah banyaknya oksigen yang dibutuhkan oleh mikroorganisme dalam proses dekomposisi bahan organik. Jadi BOD menggambarkan suatu proses oksidasi bahan organik oleh mikroorganisme yang terjadi di perairan. Proses dekomposisi bahan organik di perairan terjadi secara bertahap, untuk mencapai 96% bahan organik terurai, diperlukan waktu ±20 hari. Untuk pengamatan BOD diambil standart waktu 5 hari, karena diduga dalam waktu 5 hari proses dekomposisi telah terjadi 75% bahan organik telah terurai, sehingga dianggap cukup untuk memberikan gambaran nilai BOD. Pengukuran kadar BOD juga menggunakan metode titrasi Winkler

Alat:
- Botol Winkler
- Pipet tetes
- Pipet volumetri
- Erlenmeyer
- Buret dan statif

Bahan:
- Air sampel
- Iodida alkali (perekasi Winkler)
- H_2SO_4 pekat
- Larutan Mangan sulfat/ MnSO_4 48%
- Natrium tiosulfat 0,025 N
- Indikator amylum 1%

Cara kerja:
- Saring 100 mL sampel air dari lumpur.
- Diambil 75 mL sampel air yang telah disaring, diencerkan dengan aquadest 100X dan dimasukkan kedalam 2 botol Winkler.
- Disimpan dalam keadaan gelap (dibungkus dengan kertas karbon atau plastik hitam) dan ditempat yang gelap. Dicatat suhu air dan jam penyimpanan. Dihitung kadar \(O_2 \) nya setelah 5 hari kemudian.
- Terhadap sampel juga dihitung kadar \(O_2 \) sesaat.
- Dicatat kadarnya.

Perhitungan:
Kadar BOD (mg/L) = (DO sesaat – \(DO_5 \)) X pengenceran

4) **Karbondioksida bebas (CO\(_2\))**

Karbondioksida bebas yang dianalisa asalah karbondioksida yang berada dalam bentuk gas yang terkandung dalam air. Kandungan CO\(_2\) bebas dalam air murni pada tekanan 1 atm dan temperature 25 °C adalah sekitar 0,4 ppm. CO\(_2\) dalam perairan didapatkan dari dari proses difusi udara dan hasil proses respirasi organism akuatik. didasar perairan CO\(_2\) juga dihasilkan oleh proses dekomposisi. metode yang umum digunakan untuk pengukuran CO\(_2\) bebas adalah metode titrimetri dengan Sodium Karbonat (Na\(_2\)CO\(_3\)).

Prinsip analisa karbondioksida bebas bereaksi dengan sodium karbonat atau natrium hidroksida standart membentuk sodium bikarbonat ketiga larutan tidak berwarna sehingga memerlukan indikator penolpthalein (PP) yang akan memberikan warna merah/ pink bila larutan menjadi basa (pH > 8,3). sehingga kelebihan sedikit saja sodiumkarbonat atau sodium hidroksida akan menyebabkan larutan berwarna merah yang
menandai akhir titrasi. Pengukuran karbon dioksida bebas dengan metode titrasi dapat dilakukan sesuai prosedur dibawah ini

Alat:
- Tabung reaksi
- Labu erlenmeyer
- Buret dan statif

Bahan:
- Indikator Phenol ptalein
- Natrium bikarbonat

Cara Kerja:
- Masukkan 50 mL sampel air ke dalam labu erlenmeyer.
- Tambahkan 3-5 mL indikator PP.
- Titrasi Natrium bikarbonat standart tetes demi tetes sampai berwarna merah muda.
- Catat mL Natrium bikarbonat standar yang terpakai.

Perhitungan:
Kadar $\text{CO}_2 = \frac{1000 \times \text{mL Na-bikarbonat} \times \text{Na-bikarbonat}}{\text{BA Na-bikarbonat}}$

5) **COD (Chemical Oxygen Demand)**

COD (Chemical Oxygen Demand) menyatakan jumlah total oksigen yang dibutuhkan untuk mengoksidasi semua bahan organik yang terdapat di perairan, menjadi CO_2 dan H_2O. nilai COD akan meningkat sejalan dengan meningkatnya nilai bahan organik di perairan.

COD berbanding terbalik dengan Dissolved Oxygen (DO). Artinya, semakin sedikit kandungan udara di dalam air maka angka COD akan semakin besar. Besarnya angka COD tersebut menunjukkan bahwa keberadaan zat organik di air berada dalam jumlah yang besar. Organik-
organik tersebut mengubah oksigen menjadi karbondioksida dan air sehingga perairan tersebut menjadi kekurangan oksigen. Hal inilah yang menjadi indikator seberapa besar pencemaran di dalam limbah cair oleh pembuangan domestik dan industri. Semakin sedikit kadar oksigen di dalam air berarti semakin besar jumlah pencemar (organik) di dalam perairan tersebut. Karena itu secara logika kita dapat berkata bahwa air yang kita konsumsi harus memiliki kadar COD yang sangat rendah.

Pada prinsipnya pengukuran COD adalah penambahan sejumlah tertentu kalium bikromat \((K_2Cr_2O_7)\) sebagai oksidator pada sampel (dengan volume diketahui) yang telah ditambahkan asam pekat dan katalis perak sulfat, kemudian dipanaskan selama beberapa waktu. Selanjutnya, kelebihan kalium bikromat ditera dengan cara titrasi. Dengan demikian kalium bikromat yang terpakai untuk oksidasi bahan organik dalam sampel dapat dihitung dan nilai COD dapat ditentukan. Kelemahannya, senyawa kompleks anorganik yang ada di perairan yang dapat teroksidasi juga ikut dalam reaksi, sehingga dalam kasus-kasus tertentu nilai COD mungkin sedikit ‘over estimate’ untuk gambaran kandungan bahan organik. COD dapat diukur dengan 2 cara yaitu dengan:

a) **COD meter**

 Masing-masing kubet yang berisi sampel dan blanko ditambahkan Kalium Dikromat \((K_2Cr_2O_7)\) 0,25N sebanyak 2 ml Dikocok lalu dimasukkan ke dalam COD reactor selama 2 jam Dilakukan pembacaan pada DR 2000 setelah 2 jam Catat pembacaan

b) **Titrasi (Refluks)**

 Alat:

 (1) labu Erlenmeyer, pendingin Liebing 30 cm
(2) Hot Plate
(3) Labu ukur 100 ml dan 1000 ml
(4) Buret 50 ml
(5) Pipet volume 5 ml, 10 ml, 15 ml, dan 50 ml
(6) Labu Erlenmeyer 250 ml (labu refluks)
(7) Timbangan analitik
(8) Panci
(9) Baskom untuk mendinginkan

Bahan :

(1) Larutan sampel 10ml
(2) Larutan Bahan Kalium dikromat (K₂Cr₂O₇) 0,25N
(3) Larutan K₂Cr₂O₇ yang diencerkan dengan air suling
(4) Larutan Asam Sulfat – perak sulfat
(5) Larutan indicator ferroin
(6) Larutan ferro ammonium sulfat (FAS) 0,1N
(7) Larutan baku potassium hydrogen phthalat (KHP)
(8) Serbuk merkuri sulfat (HgSO₄)
(9) Batu didih
(10) Air suling

Prosedur :

(1) Erlenmeyer 125 ml dicuci bersih, bebas bahan organik
(2) 10 ml air sampel dimasukkan ke dalam erlenmeyer dengan menggunakan pipet,
(3) Ditambahkan 5 ml K₂Cr₂O₇ dan di aduk
(4) Kemudian ditambahkan dengan hati-hati 15 ml H₂SO₄ pekat (menggunakan ruang asam),
(5) Erlenmeyer ditutup dengan gelas penutup dan dibiarankan selama selama 30 menit,
(6) Setelah itu diencerkan dengan menambahkan 7,5 ml aquades bebas ion dan di aduk

(7) Ditambahkan 2-3 tetes indicator ferroin, kemudian dititrasi dengan fas hingga terjadi perubahan warna dari kuning oranye atau biru kehijauan menjadi merah kecoklatan,

(8) Setelah itu dibuat larutan blanko dengan 10 ml aquades dengan cara yang sama,

Perhitungan:

Kadar COD (mg/l) = ((A-B)× N × 8000)

ml contoh uji

Keterangan:
A: volume FAS yang dibutuhkan untuk blanko (ml)
B: volume larutan FAS yang dibutuhkan untuk sampel (ml)

N: Normalitas larutan FAS

Batas COD (100-300)mg/L

6) TOM (Total Organic Matter)

Bahan organik total atau *Total Organic Matter* (TOM) menggambarkan kandungan bahan organik total suatu perairan yang terdiri dari bahan organik terlarut, tersuspenisi (*particulate*) dan koloid. Prinsip analisa TOM hamper sama dengan prinsip analisa COD yaitu didasarkan pada kenyataan bahwa hampir semua bahan organik dapat dioksidasi dengan menggunakan senyawa kalium permanganate atau kalium dikromat. Oksidator yang digunakan pada penentuan TOM adalah KMnO₄, diasamkan dengan H₂SO₄ pekat dan dididihkan beberapa saat. Pengukuran kadar TOM dapat dilakukan dengan cara titrasi
Alat:
• Perangkat titrasi
• Termometer
• Erlenmeyer
• Hot plate
• Pipet volume
• Pipet Mohr

Bahan:
• H₂SO₄ 6 N
• KMnO₄ 0,01 N
• H₂C₂O₄ 0,01 N

Cara kerja:
• Dipipet 25 mL sampel air, dimasukkan kedalam erlenmeyer.
• Tambahkan 0,5 mL H₂SO₄, beberapa teter KMnO₄ 0,01 N sampai berwarba merah muda sedikit agar semua senyawa organik yang tingkatnya rendah dioksidasi menjadi tingkat tinggi.
• Pipet 10 ml larutan KMnO₄ 0,01 N kedalamnya. Warna larutan akan berwarna merah.
• Dididihkan larutan tersebut, catat jamnya. Warna larutan akan lebih muda, biarkan mendidih selama 10 menit lalu diangkat.
• Turunkan suhu 80 °C, ditambahkan 10 ml asam oksalat 0,01 N dengan pipet khusus. Larutan akan menjadi bening pada oksalat berlebih.
• Dalam suhu 70-80 °C titasi larutan dengan KMnO₄ 0,01 N sampai berwarna pink.

Perhitungan:
TOM (mg/l) = (10 + a) b – (10 x c) 31,6 x 1000
dimana :
\[a = \text{titrasi KMnO}_4 \]
\[b = N\text{ KMnO}_4 \]
\[c = \text{NH}_2\text{C}_2\text{O}_4 0,1 N \]
\[d = \text{sampel air (mL)} \]

7) **Kesadahan Total**

Kesadahan air adalah kandungan mineral-mineral tertentu di dalam air, umumnya ion kalsium (Ca) dan magnesium (Mg) dalam bentuk garam karbonat. Air sadah atau air keras adalah air yang memiliki kadar mineral yang tinggi, sedangkan air lunak adalah air dengan kadar mineral yang rendah. Selain ion kalsium dan magnesium, penyebab kesadahan juga bisa merupakan ion logam lain maupun garam-garam bikarbonat dan sulfat. Metode paling sederhana untuk menentukan kesadahan air adalah dengan sabun. Dalam air lunak, sabun akan menghasilkan busa yang banyak. Pada air sadah, sabun tidak akan menghasilkan busa atau menghasilkan sedikit sekali busa. Kesadahan air total dinyatakan dalam satuan ppm berat per volume (w/v) dari CaCO$_3$.

Air sadah digolongkan menjadi 2 jenis berdasarkan jenis anion yang ikat oleh kation (Ca$^{2+}$, Mg$^{2+}$) yaitu:

a) **Air sadah sementara**

Mengandung garam hidrokarbonat seperti Ca(HCO$_3$)$_2$ dan atau Mg(HCO$_3$)$_2$.

- Air sadah sementara dapat dihilangkan kesadahannya dengan cara memanaskan air tersebut sehingga garam karbonatnya mengendap, reaksinya:

\[
\text{Ca(HCO}_3\text{)}_2 \text{(aq)} \rightarrow \text{CaCO}_3 \text{(s) + H}_2\text{O (l) + CO}_2 \text{(g)}
\]
Mg (HCO$_3$)$_2$ (aq) MgCO$_3$ (s) + H$_2$O (l) + CO$_2$ (g)

- Selain dengan memanaskan air, sadah sementara juga dapat dihilangkan kesadahannya dengan mereaksikan larutan yang mengandung Ca(HCO$_3$)$_2$ atau Mg (HCO$_3$)$_2$ dengan kapur (Ca(OH)$_2$):
 Ca(HCO$_3$)$_2$ (aq) + Ca(OH)$_2$ (aq) \rightarrow 2CaCO$_3$ (s) + 2H$_2$O (l)

b) Air sadah tetap

Mengandung garam sulfat (CaSO$_4$ atau MgSO$_4$) terkadang juga mengandung garam klorida (CaCl$_2$ atau MgCl$_2$). Air sadah tetap dapat dihilangkan kesadahannya menggunakan cara:

- Mereaksikan dengan soda Na$_2$CO$_3$ dan kapur Ca(OH)$_2$, supaya terbentuk endapan garam karbonat dan atau hidroksida:
 CaSO$_4$ (aq) + Na$_2$CO$_3$ (aq) \rightarrowCaCO$_3$ (s) +Na$_2$SO$_4$ (aq)

- Proses Zeolit Dengan natrium zeolit (suatu silikat) maka kedudukan akan digantikan ion kalsium dan ion magnesium atau kalsium zeolit.

Metode Titrasi EDTA

- Kesadahan total yaitu ion Ca$^{2+}$ dan Mg$^{2+}$ dapat ditentukan melalui titrasi dengan EDTA sebagai titran dan menggunakan indikator yang peka terhadap semua kation tersebut. Kejadian total tersebut dapat dianalisis secara terpisah misalnya dengan metode AAS (*Automatic Absorption Spectrophotometry*).

- Asam *Ethylenediamine Tetraacetic* dan garam sodium ini (singkatan EDTA) bentuk satu kompleks kelat yang dapat larut ketika ditambahkan ke suatu larutan yang mengandung kation logam tertentu. Jika sejumlah kecil Eriochrome Hitam T atau Calmagite ditambahkan ke suatu larutan mengandung kalsium
dan ion-ion magnesium pada satu pH dari 10,0 ± 0,1, larutan menjadi berwarna merah muda. Jika EDTA ditambahkan sebagai satu titran, kalsium dan magnesium akan menjadi suatu kompleks, dan ketika semua magnesium dan kalsium telah manjadi kompleks, larutan akan berubah dari berwarna merah muda menjadi berwarna biru yang menandakan titik akhir dari titrasi. Ion magnesium harus muncul untuk menghasilkan suatu titik akhir dari titrasi. Untuk memastikannya ini, kompleks garam magnesium netral dari EDTA ditambahkan ke larutan buffer.

Penentuan Ca dan Mg dalam air sudah dilakukan dengan titrasi EDTA. pH untuk titrasi adalah 10 dengan indikator Eriochrom Black T (EBT). Pada pH lebih tinggi, 12, Mg(OH)₂ akan mengendap, sehingga EDTA dapat dikonsumsi hanya oleh Ca²⁺ dengan indikator murexide. Adanya gangguan Cu bebas dari pipa-pipa saluran air dapat di masking dengan H₂S. EBT yang dihaluskan bersama NaCl padat kadangkala juga digunakan sebagai indikator untuk penentuan Ca ataupun hidroksinaftol. Seharusnya Ca tidak ikut terkopresitasi dengan Mg, oleh karena itu EDTA direkomendasikan.

Kejelasan dari titik-akhir banyak dengan pH peningkatan. Bagaimanapun, pH tidak dapat ditingkat dengan tak terbatas karena akibat bahaya dengan kalsium karbonat mengendap, CaCO₃, atau hidroksida magnesium, Mg(OH)₂, dan karena perubahan celup warnai di ketinggian pH hargai. Ditetapkan pH dari 10,0 ± 0,1 adalah satu berkompromi kepuasan. Satu pembatas dari 5 min disetel untuk jangka waktu titrasi untuk memperkecil kecenderungan ke arah CaCO₃ pengendapan.
Cara Pengukuran

Alat:

a) Pipet volume 10,0 mL
b) Erlenmeyer
c) Buret

Bahan:

a) Larutan EDTA
b) Larutan Buffer pH 10
c) Indikator EBT

Cara kerja:

a) Dipipet 10 mL air dimasukkan kedalam erlenmeyer.
b) Tambahkan indikator EBT hingga larutan menjadi merah muda.
c) Tambahkan larutan buffer pH 10 sebanyak 1-1,5 mL.
d) Dititrasi dengan larutan EDTA hingga menjadi biru muda.
e) Catat volume EDTA yang dipakai.

Perhitungan:

\[
\text{mg/L } \text{CaCO}_3 : \frac{\text{mL EDTA} \times \text{faktor EBT}}{\text{10 mL sampel}}
\]

8) Alkalinitas

Alkalinitas merupakan konsentrasi total dari unsur basa yang terkandung dalam air dan biasa dinyatakan dalam mg/liter atau setara dengan kalsium karbonat (CaCO\textsubscript{3}). Dikatakan bahwa alkalinitas dalam air tawar sangat berperan penting karena alkalinitas tidak hanya berpengaruh langsung terhadap pertumbuhan plankton, tapi juga mempengaruhi parameter-parameter lainnya.
Alkalinitas adalah kapasitas air untuk menetralkan tambahan asam tanpa penurunan nilai PH larutan. Alkanitas merupakan hasil dari reaksi-reaksi dalam larutan sehingga merupakan sebuah analisa “makro” yang menggabungkan beberapa reaksi. Alkalinitas dalam air disebabkan oleh ion-ion karbonat, bikarbonat, hidroksida (OH-) dan juga borat, fosfat, silikat dan sebagainya. Dalam air sifat alkalinitas sebagian besar disebabkan oleh adanya bikarbonat dan sisanya oleh karbonat dan hidroksida (OH-)

Alkalinitas merupakan kapasitas penyangga (buffer capacity) terhadap pH perairan yang terdiri atas anion-anion seperti anion bikarbonat (HCO₃⁻), karbonat (CO₃²⁻) dan hidroksida (OH⁻). Borat (H₂BO₃⁻), silikat (HSiO₃⁻), fosfat (HPO₄²⁻ dan H₂PO₄⁻) sulfide (HS⁻) dan amonia (NH₃) dalam perairan yang dapat menetralkan kation hydrogen. Namun pembentuk alkalnitas yang utama adalah bikarbonat, karbonat dan hidroksida. Pengukuran alkalinitas dapat dilakukan dengan metode titrasi

Alat:

a) Tabung plastik
b) Erlenmeyer
c) Pipet

Bahan:

a) Indikator PP pH 4,5
b) Brom Cressol Red pH 8,3
c) Sulfuric Acid

Cara kerja:

a. Masukkan sampel kedalam botol plastik, lalu dituang kedalam erlenmeyer.
b. Tambahkan 1 tetes indikator PP, jika tidak berwarna PP = 0 (langsung ke poin 4).

c. Jika berwarna pink, tambahkan sulfuric acid tetes demi tetes sampai warna hilang (hitung jumlah tetes yang digunakan) (A ml)

d. Tambahkan 3 - 4 tetes Brom cresol Red lalu titrasi dengan asam sulfat sampai berubah warna dari biru kehijauan menjadi pink. (B ml)

e. Catat jumlah tetes asam sulfat yang digunakan.

Perhitungan:

1 tetes asam sulfat = 1 ppm

Alkalinitas pp karbonat (ppm CaCO₃) = A x N titran x 100/2 x 1000 ml sampel

Alkalinitas Total (ppm CaCO₃) = (A + B) x N titran x 100/2 x 1000 ml sampel

9) Fosfat

Fosfat terdapat dalam air alam atau air limbah sebagai senyawa ortofosfat, polifosfat dan fosfat organik. Setiap senyawa fosfat tersebut terdapat dalam bentuk terlarut, tersuspensi atau terikat di dalam sel organisme dalam air. orthophosphate adalah phosphate anorganik, merupakan salah satu bentuk phosphor (P) yang terlarut dalam air. Orthophosphate adalah bentuk phosphor yang dapat langsung dimanfaatkan oleh organism nabati (fitoplankton dan tumbuhan air).

Dalam larutan asam, orthophosphate bereaksi dengan Ammonium molybdate membentuk senyawa kompleks Ammonium phosphomolybdate. Dengan suatu pereaksi reduksi (Metode Stannous chloride), molybdenum dalam senyawa kompleks tersebut dapat tereduksi menjadi senyawa yang berwarna biru. Intensitas warna biru bertambah dengan semakin besarnya kadar fosfat terlarut yang ada.
Banyaknya konsentrasi ortofosfat dalam air contoh dapat terukur dengan menggunakan prinsip spektrofotomerik yang dilakukan di laboratorium. Agar dapat terbaca oleh mesin spektrofotometer, ortofosfat dalam 10 ml air contoh yang telah disaring harus direaksikan terlebih dahulu dengan beberapa senyawa kimia. Akan tetapi reaksi ini harus berjalan dibawah pH 8.3. Oleh karena itu, air contoh diberikan 1 atau 2 tetes indikator phenolphthalein sebagai penunjuk pH. Bila muncul warna merah muda setelah diberi indicator (artinya pH>8.5), maka pH air contoh diturunkan dengan cara menambahkan H$_2$SO$_4$ encer sampai warnanya berubah menjadi bening (pH<8.3). Setelah itu air contoh tersebut direaksikan dengan 1.6 ml combine reagent yang terdiri atas H$_2$SO$_4$ 5 N, potasium antimonil tartat, amonium molibdat, dan asam ascorbat. Kemudian ditutup rapat dan didiamkan selama 10 menit. Lalu absorbansi warna air contoh (biru) diukur dengan spektrofotometer pada panjang gelombang 880 nm. Warna biru yang ditimbulkan merupakan akibat terbentuknya senyawa amonium fosfomolibdat tereduksi. Kemudian Absorbansi air contoh disesuaikan dengan absorbansi akuades (blanko) dan konstanta perhitungan (APHA, 1989).

_Alat:

a) Spektrofotometer

b) pipet tetes

_Bahan:

a) Ammonium Molybate; (NH$_4$)$_8$MO$_7$O$_{24}$.4H$_2$O

b) Asam borat 1 %; H$_3$BO$_3$

c) Asam sulfat 2,5 M; H$_2$SO$_4$

d) Asam ascorbic 1 %

e) Kertas saring Whatman no. 42

_Cara Kerja:

a. Mengambil sampel air yang dengan menggunakan pipet 2,0 yang telah disaring, lalu memasukkan ke dalam tabung reaksi.

b. Menambahkan 2,0 ml H$_3$BO$_3$ 1%, lalu mengaduknya.
c. Menambahkan 3,0 ml larutan pengoksid fosfat (campuran antara Asam sulfat 2,5 M, asam ascorbic & ammonium molybdate) lalu mengaduknya. Dan biarkan satu jam, agar terjadi reaksi yang sempurna.

d. Membuat larutan blanko dari 2,0 ml akuades. Dengan melakukan prosedur b dan c

e. Memilih program pengukuran fosfat pada alat spektrofotometer

f. Memasukkan ke dalam kuvet larutan blanko yang telah dibuat kemudian memasukkan kuvet ke alat Spektrofotometer kemudian menekan “Zero”

g. Setelah itu memasukkan kuvet yang berisi contoh air yang telah dipreparasi kemudian menekan “Read”

h. Mencatat nilai fosfat yang diperoleh dalam satuan mg/L

Gambar 33. Pengukuran kualitas air dengan menggunakan spektrofotometer
10) **Amoniak**

Penentuan amonia-nitrogen digunakan metode Indophenol (metode phenate). Metode ini memperoleh hasil yang baik untuk perairan air kolam. Perekikan yang digunakan adalah phenate (phenol), chlorox (oxidizing solution) dan mangan sulfat. Phenol dan hypochlorit (chlorox) beraksi dalam kondisi larutan basa membentuk phenylquinone-monoimine yang selanjutnya akan bereaksi dengan ammonia menjadi indophenol yang berwarna biru. Kepekatan warna biru sebanding dengan kadar amonia yang ada.

Diantara berbagai cara yang digunakan dalam menentukan ammonia, yang paling sederhana adalah cara Nessler langsung. Cara ini umum digunakan terhadap sampel yang diharapkan memiliki kandungan ammonia yang tinggi. Cara yang lebih teliti melibatkan destilasi ammonia dan penggunaan spektrofotometer.

Penentuan ammonia dengan perekikan Nessler. Penentuan ammonia bergantung pada kenyataan bahwa ion ammonia \((\text{NH}_4^+)\) memberikan warna coklat kekuningan dengan perekikan Nessler, dan bahwa intensitas warna berbading langsung dengan jumlah ammonia yang ada.

a) **Pengukuran ammonia dengan metode Nessler**

(1) **Perekasi**

Semua perekasi yang dibuat dengan menggunakan ammonia bebas air

(2) **Perekasi Nessler** Larutkan 10 gram air raksa yodida anhidrat \((\text{Hgl}_2)\) dan 7 gram kalium iodida anhidrat dalam sejumlah kecil air. Tambahkan campuran ini dengan pengadukan yang teratur kedalam larutan dingin 16 gram NaOH dalam 50 ml ammonia bebas air. Encerkan sampai 100 ml. Simpan dalam botol
gelap. Apabila raksayodida tidak adadapat pula dibuar pereaksi nessler dengan menggunakan raksa klorida seperti dibawah ini.

(3) **Amonium Klorida Induk** Larutkan 3,818 gram ammonium klorida anhidrat dalam 1 liter ammonia bebas air. 1 ml larutan ini mengandung 100 mg nitrogen ammonia

(4) **Amonium Klorida Standar** Encerkan 10 ml larutan ammonium klorida induk menjadi 1 liter. 1 ml larutan ini sama dengan 10 mg ammonium nitrogen atau 12,2 mg ammonia.

(5) **Larutan 50 % Natrium Kalium Tartarat.** Larutkan 50 gram natrium kalium tartarat dalam 100 ml ammonia hangat bebas air.

(6) **Larutan Lead Asetat 10 %** Larutka 10 gram lead asetat dalam 100 ml air.

Cara Kerja

(1) Ambillah 1 ml ammonium klorida dalam tabung nessler. Tabung nessler dibuat khusus untuk pengukuran warna optic. Bilamana tidak ada tabung nessler Gunakan tabung penguji apapun yang terbuat dari gelas yang jernih. Semua tabung yang digunakan untuk perbadingan warna harus sama ukuran dan kualitasnya.
(2) Encerkan larutan standar menjadi 100 ml. Tambahkan 2 ml pereaksi nessler.

(3) Apabila 100 ml sampel tak berwarna dalam tabung lain yang sama, dan tambahkan 2 ml pereaksi nessler kedalamnya.

(4) Bilamana sampel air menjadi berkabut pada penambahan pereaksi nessler, hentikan.

(5) Kepada sampel segar tambahkan 2 ml campuran larutan natrium kalium tartarat 50 % dan pereaksi nessler dengan volume yang sama.

(6) Biarkan kedua standar dan sampel selama 10 menit. Warna kuning yang terjadi bandingkan langsung dengan jumlah ammonia yang ada.

Perkiraan Banyaknya ammonia dapat dibuat berdasarkan intensitas warna. Warna coklat kemerahan mencirikan adanya lebih dari 5 mg/liter ammonia. Warna kuning mencolok mencirikan konsentrasi ammonia antara 1 sampai dengan 5 mg/liter. Warna kuning yang hampir tak teramati mencirikan ammonia kurang dari 0,1 mg/liter.

b) Pengukuran ammoniak *(Ammonia-Nitrogen Total/ TAN)* dengan metode Phenate

Untuk menentukan banyaknya konsentrasi total ammonia nitrogen dalam air contoh digunakan prinsip spektrofotomerik yang dilakukan di laboratorium. Agar dapat terbaca oleh mesin spektrofotometer, amonia dalam 10 ml air contoh yang telah disaring harus direaksikan terlebih dahulu dengan 0.5 ml senyawa fenol dan 0.5 ml sodium nitroprusid kemudian dihomogenkan, lalu di reaksikan kembali dengan oxidizing reagent sebanyak 1 ml dan dihomogenkan kembali. Setelah itu, tabung reaksi yang digunakan untuk melakukan reaksi tersebut ditutup rapat dan didiamkan selama satu jam. Lalu absorbansi warna air contoh (biru) diukur...

Alat:
(1) Spektrofotometer
(2) Saringan Whatman no 42
(3) Pipet
(4) Gelas piala
(5) Magnetic stirrer

Bahan:
(1) MnSO₄
(2) Chlorox (oxidizing solution)
(3) Phenate

Cara Kerja:
(1) Saring 25 – 50 ml air sampel dengan kertas saring whatman no 42 (jangan menggunakan vacuum pump, agar tak ada ammonia yang hilang.
(2) Pipet 10 ml air sampel yang telah disaring, masukkan ke dalam gelas piala
(3) Sambil diaduk dengan magnetic stirrer tambahkan 1 tetes mnso₄, 0,5 ml chlorox, dan 0,6 ml phenate. Diamkan selama ±15 menit, sampai pembentukan warna stabil (warna akan tetap stabil selama beberapa jam)
(4) Buat larutan blanko dari 10 ml akuades, lakukan prosedur 3
(5) Buat larutan standart dari 10 ml larutan standart ammonia (0,3 ppm) lakukan prosedur 3
(6) Dengan larutan blanko pada panjang gelombang 630 nm, set spektrofotometer pada absorbance 0,00 (transmitteance 100%) kemudian lakukan pengukuran sampel dan larutan standart

(7) Catat data yang diperoleh

Perhitungan;

\[
TAN \text{ mg/l sebagai N} = \frac{ppm \text{ NH}_3-N \times Cst}{Ast}
\]

Keterangan:

Cst : konsentrasi larutan standart (0,03 mg/l)
Ast : nilai absorbance (transmittance) larutan standart
As : nilai absorbance (transmittance) air sampel

Konsentrasi faktor yang terukur tersebut dinyatakan dalam kadar nitrogen (N) yang terdapat dalam ammonia (NH\(_3\)). Untuk mengetahui konsentrasi ammonia yang dinyatakan dalam mg NH\(_3\)/L, nilai TAN di atas dikalikan dengan actor seperti pada persamaan berikut:

\[
mg \text{ NH}_3/L = ppm \text{ NH}_3-N \times BM \text{ NH}_3 = ppm \text{ NH}_3-N \times 1,216
\]

Keterangan:

BM : berat molekul
BA : berat atom

11) Nitrat

Penentuan nitrat-nitrogen digunakan metode brucine dengan pereaksi-pereaksi brucine dan asam sulfat pekat. Reaksi brucine dengan nitrat membentuk senyawa yang berwarna kuning. Kecepatan reaksi ini

Prosedur pengukuran Nitrat-Nitrogen dengan metode Brucine

Alat:

a. saringan whatman no 42
b. pipet
c. spektrofotometer
d. gelas ukur
e. beaker glass

Bahan:

a. air sampel
b. akuades
c. larutan brucine
d. larutan asam sulfat pekat
e. larutan standart nitrat-N

Cara kerja:

a. Saring 25 – 50 ml air sampel dengan kertas saring
b. Ambil sampel sebanyak 5 ml masukkan ke dalam gelas piala
c. Tambahkan 0.5 ml brucine aduk
d. Tambahkan 5 ml H₂SO₄ pekat aduk
e. Setelah itu didiamkan dan dilakukan spektrofotometer dengan gelombang 410 nm (catat data)
f. Pembuatan standar, yaitu diambil 5 ml NO₃ dan dimasukkan ke dalam labu ukur, tambahkan akuades sebanyak 100 ml serta dikocok
hingga rata. Kemudian ambil 25 ml serta ditetesi dengan 0.5 brucine, dan 5 ml H₂SO₄ didiamkan dan dispektro dengan gelombang 410 nm.

g. Untuk blanko, pertama diambil akuades sebanyak 25 ml, kemudian ditetesi dengan 0.5 brucine, dan 5 ml H₂SO₄. Didiamkan dan dispektro

Perhitungan:

\[
\text{mg NO}_3^-/l = \text{ppm NO}_3^- \times \text{BM NO}_3^- = \text{ppm NO}_3^- \times 4,43 \\
\text{BA N}
\]

12) Nitrit

Prosedur pengukuran nitrit-nitrogen dengan metode Sulfanilamide

Alat:

a) saringan whatman no 42
b) pipet
c) spektrofotometer
d) gelas ukur
e) beaker glass

Bahan:

a) diazotizing reagent (sulfanilamide)
b) coupling reagent (NED)
c) larutan standart nitrit-N

Cara kerja:

a. Saring air sampel sebanyak 25-50 ml dengan kertas saring
b. Pipet 10 ml air sampel yang telah disaring masukkan ke dalam gelas piala
c. Tambahkan 0,2 ml (+4 tetes) _diazotizing reagent_, aduk, biarkan 2 – 4 menit
d. Tambahkan 0,2 ml ned, aduk, biarkan 10 menit agar terbentuk warna merah (pink) dengan sempurna
e. Buat larutan blanko dari 10 ml akuades, lakukan prosedur 3 dan 4
f. Buat satu seri larutan standart nitrit-n dengan konsentrasi (ppm) sebagai berikut : 0,025; 0,05; 0,01; 0,02; 0,04; 0,06; 0,08 dari larutan standar 1 ppm dengan pengenceran yang tepat dengan menggunakan pipet dan labu takar. Lakukan prosedur 3 dan 4
g. Dengan larutan blanko dan pada panjang gelombang 543 nm, set spektrofotometer pada absorbance = 0,000, kemudian ukur sampel dan larutan standart
h. Untuk menentukan konsentrasi nitrit-nitrogen, buat grafik atau persamaan regresi (y = ax + b) dari laruran standart. Sumbu x sebagai konsentrasi (ppm) nitrit nitrogen ddan sumbu y sebagai nilai absorbance (a) atau transmitter (t). Nilai a atau t air sampel diplotkan pada grafik atau disubstitusikan dalam persamaan regresi, sehingga diperoleh kadar nitrit-nitrogen di perairan.

Perhitungan:

Untuk memperoleh kadar Nitrit tanpa Nitrogen maka gunakan rumus berikut dari nilai NO2-N yang telah diperoleh dari persamaan diatas

\[
\text{mg NO2-/l} = \frac{\text{ppm NO2-N} \times \text{BM NO2}}{3.28} \times \text{BA N}
\]
d. Pengukuran parameter biologi

1) Plankton

Secara umum keberadaan plankton di perairan akan dipengaruhi oleh tipe perairannya (mengalir atau tergenang), kualitas kimia dan fisika perairan (misalnya suhu, kecerahan, arus, pH, kandungan CO\textsubscript{2} bebas dsb) dan adanya kompetitor pemangsa plankton. Pada perairan tergenang keberadaan plankton akan berbeda dari waktu ke waktu dan berbeda pula dalam menempati ruang atau badan air, sedangkan pada perairan mengalir unsure waktu dan ruang relative tidak berperan nyata. hal ini menyebabkan pengambilan sampel untuk pengamatan parameter biologi perairan berbeda-beda.

Pengambilan sampel air untuk pengamatan parameter plankton terdiri dari beberapa metode, yaitu:

\textit{Eksplorasi}

Setelah anda mempelajari materi pengukuran parameter kimia kualitas air, ambillah sampel kualitas air dari beberapa lokasi perairan umum dan perairan budidaya, kemudian lakukan pengukuran kualitas air sesuai prosedur yang telah dijelaskan!

Catat hasil yang kalian peroleh lalu lakukan analisa data dan diskusikan dengan kelompok dan guru anda, sampaikan hasil praktikum dan diskusi di dalam kelas!

b. pengendapan air contoh \((\text{sedimentation method})\) dengan menggunakan tabung penampung

c. centrifuge cara ini kurang diminati karena tidak portable

Pengamatan plankton sebagai parameter biologi umumnya meliputi keanekaragaman plankton dan kelimpahan plankton yang terkandung dalam suatu perairan. Perhitungan kelimpahan plankton dapat menggunakan:

(1) \textbf{Haemocytometer}, pengamatan dengan alat ini ditujukan bagi phytoplankton atau plankton mikroskopik, pada mikroskop dengan perbesaran \(100\) x. Biasa digunakan untuk perhitungan \((\text{counting})\) fitoplankton dengan ukuran < \(10\) \(\mu\)m.
Gambar 34. *Haemocytometer (b)* perbesaran penampang untuk menghitung sampel plankton (c) titik pengamatan kelimpahan plankton

(2) *Sedgwick rafter cell*, pengamatan dengan alat ini ditujukan bagi Mikrozooplankton dan Fitoplankton dengan menggunakan mikroskop binokuler perbesaran 100

Gambar 35. *Sedgwick rafter cell*

Sedgwick rafter cell merupakan alat pengamatan plankton yang paling sering digunakan untuk kegiatan identifikasi plankton, karena memiliki kapasitas yang relatif lebih besar, sehingga dapat digunakan untuk identifikasi fitoplankton dan zooplankton yang berukuran mikro. Volume *sedgwick rafter cell* tepat 1(satu) cc atau 1 cm³ dengan perincian panjang 50 mm, lebar 20 mm dan tebal 1 mm.
(3) **Bogorov tray**, pengamatan dengan alat ini ditujukan bagi zooplankton dengan menggunakan mikroskop binokuler perbesaran 40 x, volume bogorov tray dalam satu kali pengamatan ± 6 ml.

![Bogorov tray](image)

Gambar 36. Bogorov tray

Parameter-parameter biologi kualitas air yang sering dijadikan perhitungan dalam pengamatan:

a) Kelimpahan plankton

Parameter kelimpahan plankton pada suatu perairan dapat mencerminkan tingkat kesuburan suatu perairan. Kelimpahan plankton yang tinggi juga dapat menunjukkan adanya dominasi dalam rantai makanan. hal ini dapat dijadikan indicator suatu perairan. Pengukuran kelimpahan plankton adalah sebagai berikut:

Alat:

1. Plankton net
2. Ember vol 10 l
3. Botol sampel
4. Sedgwick rafter (SR)
5. Hand counter
6. Pipet tetes
7. Mikroskop
8. Literature (buku identifikasi)
Bahan:
(1) Formalin 2-5%

Cara kerja:
(1) Ambil sampel plankton yang akan diamati dengan menggunakan plankton net
(2) Gunakan ember volume 10 liter untuk mengambil sampel air, banyaknya pengambilan tergantung dari kekeruhan air, bila air keruh lakukan 2-3 kali pengambilan dengan ember penuh, jika perairan relative bening lakukan 5-10 kali pengambilan sampel
(3) Tuangkan air dalam ember ke dalam plankton net yang telah dipasang flakon (botol sampel) catat volume flakon terlebih dahulu
(4) Setelah dilakukan penyaringan dengan plankton net pindahkan sampel ke dalam botol koleksi, tambahkan 2-4 tetes formalin 4%
(5) Pengamatan kelimpahan plankton menggunakan sr dengan cara mengocok botol sampel terlebih dahulu
(6) Teteskan sampel ke dalam ruang sr hingga terisi penuh, lalu tutup dengan cover
(7) Dalam sekali pengamatan sr berisi 1 ml, lakukan identifikasi minimal 3 kali pengamatan tergantung dari volume flakon yang diamati
(8) Catat jenis dan jumlah plankton setiap individu yang ditemukan

Perhitungan:
Kelimpahan plankton dihitung berdasarkan rumus Effendi (1997), dengan rumus:

\[N = \frac{B \times n}{A \times C} \]
Keterangan:

N: kelimpahan plankton (individu/l)
A: volume contoh air yang disaring (misal = 50 l)
B : volume contoh air yang tersaring (misal = 10 ml)
C : volume contoh air pada Sedgewick rafter (1 ml)
n : jumlah plankton tercacah

b) Keanekaragaman plankton

Keanekaragaman plankton dapat menggambarkan biodiversitas atau kekeyaana dari suatu perairan. selain itu dapat juga menjadi indikator pencemaran bagi perairan tersebut. pengamatan keanekaragaman sama dengan pengamatan kelimpahan plankton hanya rumusnya yang membedakan!. Pengukuran keanekaragaman plankton adalah sebagai berikut :

Alat :

(1) Plankton net
(2) Ember vol 10 l
(3) Botol sampel
(4) Sedgwick rafter (SR)
(5) Hand counter
(6) Pipet tetes
(7) Mikroskop
(8) Literature (buku identifikasi)

Bahan :

(1) Formalin 2-5%

Cara kerja :

(1) Ambil sampel plankton yang akan diamati dengan menggunakan plankton net
(2) Gunakan ember volume 10 liter untuk mengambil sampel air, banyaknya pengambilan tergantung dari kekeruhan air, bila air keruh lakukan 2-3 kali pengambilan dengan ember penuh, jika perairan relative bening lakukan 5-10 kali pengambilan sampel.

(3) Tuangkan air dalam ember ke dalam plankton net yang telah dipasang flakon (botol sampel) catat volume flakon terlebih dahulu.

(4) Setelah dilakukan penyaringan dengan plankton net pindahkan sampel ke dalam botol koleksi, tambahkan 2-4 tetes formalin 4%

(5) Pengamatan kelimpahan plankton menggunakan sr dengan cara mengocok botol sampel terlebih dahulu.

(6) Teteskan sampel ke dalam ruang sr hingga terisi penuh, lalu tutup dengan cover

(7) Dalam sekali pengamatan sr berisi 1 ml, lakukan identifikasi minimal 3 kali pengamatan tergantung dari volume flakon yang diamati.

(8) Catat jenis dan jumlah plankton setiap individu yang ditemukan

Perhitungan:

Indeks Keanekaragaman Shannon (H'). Famili dan spesies plankton yang dominan dinyatakan dalam rumus (Southwood 1989 dalam Subandiyo, 1992):

\[
H' = - \Sigma Pi \log Pi
\]

dimana Pi = n/N

Keterangan:

n : jumlah individu pada i spesies

N: jumlah total individu
Tabel 21. Nilai indeks keanekaragaman yang diperoleh dapat mengindikasikan

<table>
<thead>
<tr>
<th>H'</th>
<th>Keanekaragaman tinggi</th>
<th>Tingkat Pencemaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H' > 3$</td>
<td>Tingkat keanekaragaman tinggi</td>
<td>Tidak tercemar</td>
</tr>
<tr>
<td>$H' = 1 - 3$</td>
<td>Tingkat keanekaragaman sedang</td>
<td>Tercemar ringan</td>
</tr>
<tr>
<td>$H' < 1$</td>
<td>Tingkat keanekaragaman rendah</td>
<td>Tercemar berat</td>
</tr>
</tbody>
</table>

c) Indeks dominasi plankton

Nilai indeks dominasi plankton dapat menunjukkan dominasi jenis plankton yang ada dalam perairan tertentu. nilai indeks dominasi berkisar 0 – 1, semakin tinggi nilai indeks dominasi menunjukkan dalam suatu perairan tersebut didominasi oleh satu atau dua jenis plankton saja maka dapat pula menggambarkan keanekaragaman yang sempit dalam perairan tersebut. pengamatan dominasi plankton sama dengan pengamatan kalimpahan plankton, yang membedakan hanya pada perhitungan dari data yang telah diperoleh. Pengukuran dominasi plankton adalah sebagai berikut:

Alat:

(1) Plankton net
(2) Ember vol 10 l
(3) Botol sampel
(4) Sedgwick rafter (SR)
(5) Hand counter
(6) Pipet tetes
(7) Mikroskop
(8) Literature (buku identifikasi)

Bahan:

(1) Formalin 2-5%
Cara kerja :
(1) Ambil sampel plankton yang akan diamati dengan menggunakan plankton net
(2) Gunakan ember volume 10 liter untuk mengambil sampel air, banyaknya pengambilan tergantung dari kekeruhan air, bila air keruh lakukan 2-3 kali pengambilan dengan ember penuh, jika perairan relative bening lakukan 5-10 kali pengambilan sampel
(3) Tuangkan air dalam ember ke dalam plankton net yang telah dipasang flakon (botol sampel) catat volume flakon terlebih dahulu.
(4) Setelah dilakukan penyaringan dengan plankton net pindahkan sampel ke dalam botol koleksi, tambahkan 2-4 tetes formalin 4%
(5) Pengamatan kelimpahan plankton menggunakan sr dengan cara mengocok botol sampel terlebih dahulu
(6) Teteskan sampel ke dalam ruang sr hingga terisi penuh, lalu tutup dengan cover
(7) Dalam sekali pengamatan sr berisi 1 ml, lakukan identifikasi minimal 3 kali pengamatan tergantung dari volume flakon yang diamati
(8) Catat jenis dan jumlah plankton setiap individu yang ditemukan

Perhitungan :
Dominasi jenis ditentukan dengan menggunakan indeks dominasi Simpson (Barus 2001), dengan persamaan:

\[C = \sum_{i=1}^{n} \left(\frac{ni}{N} \right)^2 \]

Keterangan:
C = indeks dominansi simpson
ni = Jumlah individu spesies ke-i
N = Jumlah total individu
2) Bentos

a) Pengamatan bentos pada perairan yang tergenang

_Alat:

(1) Eickman grab
(2) Botol sampel
(3) Ayakan
(4) Baskom
(5) Buku identifikasi_
Bahan:

(9) Alcohol 70 % atau formalin 4 %

Cara Kerja:

Pengambilan Sampel Menggunakan Eickman Grab

(1) Kedua belahan pengeruk Eickman Grab di buka hingga terbuka lebar dan kaitkan kawat penahannya pada tempat kaitan yang terdapat pada bagian atas alat tersebut.

(2) Pengeruk di masukkan secara vertikal dan perlahan-lahan ke dalam air hingga menyentuh dasar perairan.

(3) Kemudian jatuhkan logam pembeban sepanjang tali pemegangnya sehingga kedua belahan Eickman Crab tertutup, dan lumpur serta hewan yang terdapat di dasar perairan akan terhimpun dalam kerukan.

(4) Eickman di tarik perlahan-lahan ke atas dan isinya ditumpahkan ke dalam baskom yang sudah disediakan.

(5) Sampah-sampah dari kerukan tersebut dibuang kemudian hewan bentos diseleksi dengan cermat dan memasukkan ke dalam botol sampel yang berisi alkohol 70%.

(6) Pengambilan sampel dilakukan sekali lagi pada tempat yang berbeda

Pengambilan Sampel Menggunakan Ayakan

(1) Pengambilan bentos dilakukan dengan ayakan.

(2) Ayakan dimasukkan sampai ke dalam dasar perairan.

(3) Angkat ayakan dan lumpur dipisahkan dengan bentos kemudian masukkan bentos ke dalam botol.

(4) Pengambilan sampel dilakukan sekali lagi pada tempat yang berbeda.

(5) Beri label pada masing-masing botol sampel dan diberikan alkohol 70%.
Cara kerja di Laboratorium
(1) Ambillah sampel yang sudah diawetkan. Tumpahkan ke dalam wadah yang telah disediakan dan secara acak diambil satu per satu dengan pinset dan diletakkan pada wadah yang lain sambil diurutkan.
(2) Sampel yang diurutkan dibandingkan mulai dari angka A, B, C, D dan seterusnya, kemudian dilihat apakah sejenis atau tidak.
(3) Pengamatan dilakukan diatas meja. Jenis yang dianggap sama diberi kode yang sama dan ini berarti tergolong se”Run”. Hal ini dilakukan tidak peduli jenis apapun, asal serangkaian sampel tadi dianggap sama.
(4) Lakukan pengamatan sampai semua sampel habis, catat semua data dalam buku kerja, kemudian dilakukan perhitungan indeks keanekaragaman bentos.

Pengamatan bentos pada perairan yang mengalir

Alat:

(1) Jala surber
(2) Baskom/ wadah sampel
(3) Mikroskop
(4) Lup
(5) Buku identifikasi

Bahan:

(1) Alcohol 96%

Cara kerja:

b) Pengambilan Sampel Benthos
(1) Memegang tiang jala dengan arah melawan arus
(2) Mengaduk dasar perairan dengan dua kaki secara bersama-sama untuk melepas organisme dari dasar perairan sehingga organisme akan masuk ke dalam jala.

(3) Memeriksa di dalam jala, kalau ada batu dan ranting maka mencuci batu dan ranting di dalam jala.

(4) Mencuci organisme dengan air dan mengumpulkannya pada salah satu sudut jala dengan terus menyiram air untuk memudahkan pengambilan sampel dari dalam jalah

(5) Membalik jala kearah luar untuk memindahkan sampel ke dalam wadah sampel. melakukan pengawetan dengan alkohol 96%

c) Pengamatan Benthos di Laboratorium

Pengamatan benthos di laboratorium, untuk benthos yang berukuran kecil dapat diamati secara langsung dengan bantuan mikroskop okuler, dan bentuk serta jenis benthos yang diamati dapat dicocokkan dengan buku Identifikasi benthos untuk menjari jenis filum atau spesies benthos yang diamati. Lakukan pengamatan sampai semua sampel habis, catat semua data dalam buku kerja, kemudian dilakukan perhitungan indeks keanekaragaman benthos.

Perhitungan:

Indeks Perbandingan Sekuensial

\[S.C.I (I.P.S) = \frac{NRun \times NTaksa}{NSpecimen} \]

Tabel 22. Klasifikasi Derajat Pencemaran dan Interpretasi Diversitas Komunitas dengan menggunakan Indeks Perbandingan Sekuensial.

<table>
<thead>
<tr>
<th>Derajat pencemaran</th>
<th>Diversitas Komunitas (S.C.I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belum tercemar</td>
<td>> 2</td>
</tr>
<tr>
<td>Tercemar ringan</td>
<td>2,0 - 1,6</td>
</tr>
<tr>
<td>Tercemar sedang</td>
<td>1,5 - 1,0</td>
</tr>
<tr>
<td>Tercemar berat</td>
<td>< 1</td>
</tr>
</tbody>
</table>
3) Periphyton

Periphyton adalah organisme perairan yang menempel pada substrat air, mengingat sifat hidupnya yang menempel contohnya batu, kayu atau benda lain yang terdapat di badan air minimal dengan kedalaman 10 cm. Pengambilan sampel periphyton perlu dilakukan pengerikan pada tempat penempelannya secara perlahan tanpa merusak periphyton tersebut. Perhitungan kelimpahan dan keanekaragaman periphyton juga sama dengan perhitungan plankton.

Alat:
(1) Plankton net
(2) Botol sampel
(3) Silet
(4) Mikroskop
(5) Buku identifikasi periphyton

Bahan:
(1) Lugol 1 % atau alcohol 70 %

Cara kerja:
(1) Pengambilan sampel periphyton dilakukan dengan cara mengambil benda yang terdapat pada badan air (batu, kayu, tanaman, dsb) kemudian dimasukkan ke dalam ember plastik.
(2) Lakukan pengerikan dan pengumpulan sampel pada masing-masing benda yang diambil dengan ukuran 5 x 1 cm²
(3) Hasil kerikan dimasukkan ke dalam botol sampel yang telah diberi akuades 30 ml lalu tetesi lugol 1% sebagai pengawet
(4) Pengamatan periphyton dilakukan di laboratorium dengan mengocok botol sampel terlebih dahulu
(5) Identifikasi periphyton dilakukan dengan menggunakan mikroskop dan buku identifikasi
Perhitungan:

Kelimpahan Perifiton

\[N = \frac{n \times At \times Vt}{Ac \times Vs \times As} \]

Keterangan:

- \(N \): Kelimpahan perifiton (ind/cm²)
- \(n \): Jumlah perifiton yang diamati (ind)
- \(At \): Luasan cover glass
- \(Vt \): Volume konsentrat pada botol contoh (30 ml)
- \(Ac \): Luas amatan
- \(Vs \): Volume konsentrasi dalam object glass (1 ml)
- \(As \): Luas substrat yang dikerik (5 x 1 cm²)

Indeks Keanekaragaman Shannon (H’) untuk perifiton

\[H’ = - \sum Pi \log Pi \]

dimana \(Pi = n/N \)

keterangan:

- \(n \): jumlah individu pada i spesies
- \(N \): jumlah total individu

Dominasi perifiton

\[C = \sum_{i=1}^{n} \left(\frac{ni}{N} \right)^2 \]

Keterangan:

- \(C \) = indeks dominansi simpson
- \(ni \) = Jumlah individu spesies ke-i
- \(N \) = Jumlah total individu
Kegiatan Pembelajaran (5M)

Berkunjungi ke beberapa perairan umum dan perairan budidaya dengan kelompok anda seperti sungai, waduk, tambak, kolam tanah, kolam beton serta karamba jaring apung, amati warna, bau dan organisme yang hidup diperairan tersebut. Sebutkan dan catat apa yang anda amati!

Setelah anda melakukan pengamatan ambilah sampel air untuk dilakukan pengukuran sesuai prosedur yang anda pelajari! Diskusikan bersama kelompok dan guru pendamping tentang hasil pengamatan anda!

Siapkan seluruh alat dan bahan yang digunakan untuk pengamatan dan perhitungan parameter biologi, kemudian lakukan pengukuran parameter parameter kualitas air tersebut sesuai prosedur yang telah dijelaskan!

Catat hasil yang kalian peroleh lalu lakukan analisa data dan diskusikan dengan kelompok dan guru anda, sampaikan hasil praktikum dan diskusi di dalam kelas!
3. Refleksi

Isilah pernyataan berikut ini sebagai refleksi pembelajaran!

a Dari hasil kegiatan pembelajaran apa saja yang telah anda peroleh dari aspek pengetahuan, keterampilan dan sikap?

b Apakah anda merasakan manfaat dari pembelajaran tersebut, jika ya apa manfaat yang anda peroleh? jika tidak mengapa?

c Apa yang anda rencanakan untuk mengimplementasikan pengetahuan, keterampilan dan sikap dari apa yang telah anda pelajari?

d Apa yang anda harapkan untuk pembelajaran berikutnya?

4. Tugas

Setelah anda melakukan masing-masing kegiatan pembelajaran scientific untuk masing-masing parameter kualitas air pada parameter fisika, kimia dan biologi, kumpulkan semua data yang anda peroleh, sekarang coba anda analisis hubungan dari masing-masing parameter tersebut serta pengaruhnya terhadap kegiatan budidaya perairan. Diskusikan bersama kelompok dan guru pendamping lalu sampaikan di depan kelas hasil diskusi tersebut!
5. Tes Formatif

1. Alat yang digunakan untuk mengukur kekeruhan adalah...
 a. thermometer
 b. refraktometer
 c. sechi disk
 d. turbidity meter

2. Alat yang dapat digunakan untuk mengukur kelimpahan plankton adalah...
 a. plankton net dan sedwick rafter
 b. plankton net dan haemocytometer
 c. sedwick rafter dan bogolov tray
 d. plankton net dan bogolov tray

3. Alat yang menggunakan refraksi cahaya sebagai prinsip kerjanya adalah...
 a. spektrofotometer
 b. turbidimeter
 c. thermometer
 d. conductivity meter

4. Spektrofotometer adalah alat yang digunakan untuk mengukur beberapa macam parameter kualitas air, pengukuran spektrofotometer ini berdasarkan...
 a. pengukuran serapan sinar monokromatis dengan panjang gelombang spesifik
 b. pembiasan sinar monokromatis
 c. refraksi sinar monokromatis dengan panjang gelombang
 d. cerminan sinar monokromatis sinar spesifik
5 Pengukuran BOD harus menunggu 5 hari terlebih dahulu sebelum dilakukan titrasi hal ini disebabkan karena...
 a. 75% bahan organik telah terurai
 b. 96% bahan organik telah terurai
 c. 50% bahan organik telah terurai
 e. 25% bahan organik telah terurai

6 bahan yang digunakan untuk mengukur kadar COD perairan adalah...
 a. Penolphtalen
 b. Kalium dikromat
 c. Natrium bikarbonat
 d. Kalium permanganat

7 Salah satu metode yang paling gampang untuk mengukur kesadahan adalah dengan menggunakan...
 a. batu zeolit
 b. busa sabun
 c. larutan minyak
 d. indicator ferroin

8 Pengukuran kadar nitrat perairan dapat menggunakan metode berikut ini kecuali...
 a. Brucine Method
 b. Sulfanilamide Method
 c. Cadmium Reduction Method
 d. Ultraviolet Spectrofotometric Screening Method

9 \(H' = - \Sigma P_i \log P_i \) merupakan rumus untuk menghitung...
 a. kelimpahan plankton
b. keanekaragaman plankton
c. indeks dominasi plankton
d. indeks perbandingan sekuensial

10 Bentos dapat menggambarkan tingkat pencemaran suatu perairan dengan mengetahui indeks perbandingan sekuensial, perairan dinyatakan tercemar ringan jika memiliki nilai SCI...

a. >2,0
b. 2,0 – 1,6
c. 1,5 – 1,0
d. < 1,0

C. Penilaian

1. Penilaian Sikap

INSTRUMEN PENILAIAN PENGAMATAN SIKAP
DALAM PROSES PEMBELAJARAN

Petunjuk:
Berilah tanda cek (√) pada kolom skor sesuai sikap yang ditampilkan oleh peserta didik, dengan kriteria sebagai berikut:
Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuann ke :
<table>
<thead>
<tr>
<th>No</th>
<th>Aspek Pengamatan</th>
<th>Skor</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Sebelum memulai pelajaran, berdoa sesuai agama yang dianut siswa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Interaksi siswa dalam konteks pembelajaran di kelas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kesungguhan siswa dalam melaksanakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ketelitian siswa selama mengerjakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kejujuran selama melaksanakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Disiplin selama melaksanakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tanggung jawab siswa mengerjakan praktek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kerjasama antar siswa dalam belajar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Menghargai pendapat teman dalam kelompok</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Menghargai pendapat teman kelompok lain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Memiliki sikap santun selama pembelajaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nilai Akhir</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kualifikasi Nilai pada penilaian sikap

<table>
<thead>
<tr>
<th>Skor</th>
<th>Kualifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00 – 1,99</td>
<td>Kurang</td>
</tr>
<tr>
<td>2,00 – 2,99</td>
<td>Cukup</td>
</tr>
<tr>
<td>3,00 – 3,99</td>
<td>Baik</td>
</tr>
<tr>
<td>4,00</td>
<td>Sangat baik</td>
</tr>
</tbody>
</table>

\[\text{NA} = \frac{\sum \text{skor}}{12} \]
RUBIK PENILAIAN PENGAMATAN SIKAP
DALAM PROSES PEMBELAJARAN

<table>
<thead>
<tr>
<th>ASPEK</th>
<th>KRITERIA</th>
<th>SKOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Berdoa sesuai agama yang dianut siswa</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>B. Interaksi siswa dalam konteks pembelajaran</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>C. Ketelitian siswa selama mengerjakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>D. Kejujuran selama melaksanakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>E. Disiplin selama melaksanakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>F. Memiliki sikap santun selama pembelajaran</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>G. Tanggung jawab siswa mengerjakan praktek</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>H. Kesungguhan dalam mengerjakan tugas</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>I. Kerjasama antar siswa dalam belajar</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>ASPEK</td>
<td>KRITERIA</td>
<td>SKOR</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>J. Menghargai pendapat teman dalam kelompok</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
<tr>
<td>K. Menghargai pendapat teman dalam kelompok</td>
<td>Selalu tampak</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sering tampak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mulai tampak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Belum tampak</td>
<td>1</td>
</tr>
</tbody>
</table>

DAFTAR NILAI SISWA ASPEK SIKAP DALAM PEMBELAJARAN TEKNIK NON TES BENTUK PENGAMATAN

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Siswa</th>
<th>Skor Aktivitas Siswa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aspek Sikap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berdoa sebelum belajar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaksi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ketelitian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kejujuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disiplin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanggungjawab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kesungguhan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kerjasama</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menghargai dlm klpk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menghargai klpk lain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

228
DAFTAR NILAI SISWA ASPEK SIKAP DALAM PEMBELAJARAN
PENILAIAN DIRI

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan:
Pertemuan ke :

<table>
<thead>
<tr>
<th>NO</th>
<th>PERNYATAAN</th>
<th>YA</th>
<th>TIDAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Saya mampu menyebutkan berbagai peralatan dan bahan yang digunakan dalam pengukuran kualitas air beserta kegunaannya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Saya mampu menyiapkan alat dan bahan untuk pengukuran parameter fisika kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Saya mampu mengukur minimal 5 parameter fisika kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Saya mampu menyiapkan alat dan bahan untuk pengukuran parameter kimia kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Saya mampu mengukur minimal 5 parameter kimia kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Saya mampu menyiapkan alat dan bahan untuk pengukuran parameter biologi kualitas air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Saya mampu mengukur minimal 5 parameter biologi kualitas air</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Penilaian Pengetahuan

a. Sebutkan dan jelaskan masing-masing peralatan yang digunakan dalam pengamatan dan pengukuran parameter fisika, kimia dan biologi kualitas air (min 10 parameter)
b. Jelaskan prosedur pengukuran kekeruhan, kecerahan dan intensitas cahaya!
c. Jelaskan alat dan bahan yang digunakan dalam pengukuran Amonia Nitrogen, Nitrat- Nitrogen dan Nitrit-Nitrogen!
d. Jelaskan prosedur pengamatan kelimpahan dan keanekaragaman plankton beserta perhitungannya!
e. jelaskan prosedur pengamatan bentos beserta perhitungannya!

3. Penilaian Keterampilan

INSTRUMEN PENILAIAN PENGAMATAN ASPEK KETERAMPILAN DALAM PROSES PEMBELAJARAN

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan :
Pertemuan ke :

Petunjuk :
Berilah tanda cek (√) pada kolom skor sesuai sikap yang ditampilkan oleh peserta didik, dengan kriteria sebagai berikut :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek Pengamatan</th>
<th>Skor 1</th>
<th>Skor 2</th>
<th>Skor 3</th>
<th>Skor 4</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Membaca buku bacaan / sumber belajarnya sebelum pelajaran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Memahami konsep 5M dalam pembelajaran pengukuran sampel kualitas air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mengaplikasikan kegiatan 5M yang dicantumkandalam pembelajaran pengukuran sampel kualitas air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mengukur parameter fisika kualitas air sesuai prosedur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mengukur parameter kimia kualitas air sesuai prosedur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mengukur parameter biologi kualitas air sesuai prosedur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Menghitung hasil pengamatan sesuai prosedur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Menulis laporan praktek sesuai out line yang dianjurkan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Menulis laporan dengan memaparkan dan membahas data hasil praktek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan skor:

1 : tidak terampil, belum dapat melakukan sama sekali
2 : sedikit terampil, belum dapat melakukan tugas dengan baik
3 : cukup terampil, sudah mulai dapat melakukan tugas dengan baik
4 : terampil, sudah dapat melakukan tugas dengan baik
DAFTAR NILAI SISWA ASPEK KETERAMPILAN
TEKNIK NON TES BENTUK PENUGASAN PROYEK

Nama Peserta Didik :
Kelas :
Topik :
Sub Topik :
Tanggal Pengamatan:
Pertemuan ke :

<table>
<thead>
<tr>
<th>No</th>
<th>Aspek yang dinilai</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Persiapan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembuatan rencana kerja (baik = 3, kurang baik = 2, tidak baik = 1)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Persiapan alat dan bahan (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)</td>
<td></td>
</tr>
</tbody>
</table>

2	**Pelaksanaan**	
	Keterampilan menyiapkan alat dan bahan untuk pengukuran parameter-parameter kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)	18
	Keterampilan mengukur parameter fisika kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)	
	Keterampilan mengukur parameter kimia kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)	
	Keterampilan mengukur parameter biologi kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)	
	Keterampilan menghitung hasil pengukuran sesuai prosedur (tepat = 3, kurang tepat = 2, tidak tepat = 1)	
	Keterampilan membersihkan dan menyimpan alat dan bahan pengukuran parameter kualitas air (tepat = 3, kurang tepat = 2, tidak tepat = 1)	

3	**Pelaporan Hasil**	
	Sistematika laporan (baik = 3, kurang baik = 2, tidak baik = 1)	12
	Penggunaan bahasa (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)	
	Penulisan ejaan (sesuai = 3, kurang sesuai = 2, tidak sesuai = 1)	
	Tampilan (menarik = 3, kurang menarik = 2, tidak menari = 1)	

Skor maksimal : 36

Nilai projek = (skor perolehan : skor maksimal) x 100
III. PENUTUP

Buku teks siswa dengan judul Pengelolaan Kualitas Air Jilid 1 ini merupakan salah satu literature yang dapat digunakan oleh peserta didik dalam mendapatkan informasi dan membantu kegiatan pembelajaran melalui beberapa kegiatan yang ada didalamnya. Peserta didik yang mempelajari buku ini selain mendapatkan informasi melalui membaca, peserta didik juga akan lebih memahami materi yang disampaikan karena sesuai dengan metode scientific learning, jadi peserta didik diharapkan dapat mencari informasi lebih dari sumber lain. Saran dan kritik sangat diharapkan demi tercapainya tujuan pemelajaran yang optimal dan kesempurnaan penyusunan modul yang akan datang.
DAFTAR PUSTAKA

Hilsenhoff, W. L. 1977. Use of arthropods to evaluate water quality of streams. Technical Bulletin No. 100 google.com

Wardoyo S.T.H. 1975. *Pengelolaan Kualitas Air*. Fakultas perikanan. IPB bogor. 80 hal